Oh Inkyu, Cha Hyeongyun, Chen Jiehao, Chavan Shreyas, Kong Hyunjoon, Miljkovic Nenad, Hu Yuhang
Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.
International Institute for Carbon Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan.
ACS Nano. 2020 Oct 27;14(10):13367-13379. doi: 10.1021/acsnano.0c05223. Epub 2020 Oct 16.
Condensation is a universal phenomenon that occurs in nature and industry. Previous studies have used superhydrophobicity and liquid infusion to enable superior liquid repellency due to reduced contact angle hysteresis. However, small condensate droplets remain immobile on condensing surfaces until they grow to the departing size at which the body force can overcome the contact line pinning force. Hence, condensation heat transfer is limited by these remaining droplets that act as thermal barriers. To break these limitations, we introduce vibrational actuation to a slippery liquid-infused nanoporous surface (SLIPS) and show enhanced droplet mobility, controllable condensate repellency, and more efficient heat transfer compared to static SLIPSs. We demonstrate 39% smaller departing droplet size and 8× faster droplet departing speeds on the dynamic vibrating SLIPS compared to the nonactuated SLIPS. To understand the implications of these behaviors on heat transfer, we investigate the condensate area coverage and droplet distribution to verify enhanced dewetting on dynamic vibrating SLIPSs. Using well-validated heat transfer models, we demonstrate enhanced condensation heat transfer on dynamic SLIPSs due to the higher population of smaller condensate droplets (<100 μm). In addition to condensation heat transfer, we also show that vibrating SLIPSs can enhance droplet collection. This work utilizes the synergistic combination of surface chemistry and mechanical actuation to realize enhanced droplet mobility and heat transfer in an electrically controllable and switchable manner.
冷凝是一种在自然和工业中普遍存在的现象。以往的研究利用超疏水性和液体注入来实现卓越的液体排斥性,这是由于接触角滞后减小。然而,小的冷凝液滴在冷凝表面上保持不动,直到它们长大到脱离尺寸,此时体力能够克服接触线钉扎力。因此,冷凝传热受到这些作为热障的残留液滴的限制。为了打破这些限制,我们将振动驱动引入到光滑的液体注入纳米多孔表面(SLIPS),并展示出与静态SLIPS相比,液滴迁移率增强、可控的冷凝排斥性以及更高效的传热。与未驱动的SLIPS相比,我们证明在动态振动的SLIPS上,脱离液滴尺寸小39%,液滴脱离速度快8倍。为了理解这些行为对传热的影响,我们研究了冷凝面积覆盖率和液滴分布,以验证动态振动的SLIPS上增强的去湿效果。使用经过充分验证的传热模型,我们证明由于较小冷凝液滴(<100μm)数量更多,动态SLIPS上的冷凝传热得到增强。除了冷凝传热,我们还表明振动的SLIPS可以增强液滴收集。这项工作利用表面化学和机械驱动的协同组合,以电可控和可切换的方式实现增强的液滴迁移率和传热。