Shi Zhi-Qiang, Li Huiping, Xue Cheng-Long, Yuan Qian-Qian, Lv Yang-Yang, Xu Yong-Jie, Jia Zhen-Yu, Gao Libo, Chen Yanbin, Zhu Wenguang, Li Shao-Chun
National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing 210093, China.
International Center for Quantum Design of Functional Materials (ICQD), Hefei National Laboratory for Physical Sciences at the Microscale, and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China.
Nano Lett. 2020 Nov 11;20(11):8408-8414. doi: 10.1021/acs.nanolett.0c03704. Epub 2020 Oct 16.
The interfacial charge transfer from the substrate may influence the electronic structure of the epitaxial van der Waals (vdW) monolayers and, thus, their further technological applications. For instance, the freestanding Sb monolayer in the puckered honeycomb phase (α-antimonene), the structural analogue of black phosphorene, was predicted to be a semiconductor, but the epitaxial one behaves as a gapless semimetal when grown on the -WTe substrate. Here, we demonstrate that interface engineering can be applied to tune the interfacial charge transfer and, thus, the electron band of the epitaxial monolayer. As a result, the nearly freestanding (semiconducting) α-antimonene monolayer with a band gap of ∼170 meV was successfully obtained on the SnSe substrate. Furthermore, a semiconductor-semimetal crossover is observed in the bilayer α-antimonene. This study paves the way toward modifying the electron structure in two-dimensional vdW materials through interface engineering.
来自衬底的界面电荷转移可能会影响外延范德华(vdW)单层的电子结构,进而影响其进一步的技术应用。例如,褶皱蜂窝相(α-锑烯)中的独立锑单层,即黑磷的结构类似物,被预测为半导体,但外延生长在-WTe衬底上时表现为无带隙半金属。在此,我们证明界面工程可用于调节界面电荷转移,从而调节外延单层的电子能带。结果,在SnSe衬底上成功获得了带隙约为170 meV的近独立(半导体)α-锑烯单层。此外,在双层α-锑烯中观察到半导体-半金属转变。这项研究为通过界面工程改变二维vdW材料中的电子结构铺平了道路。