Guerrero C, Lerendegui-Marco J, Paul M, Tessler M, Heinitz S, Domingo-Pardo C, Cristallo S, Dressler R, Halfon S, Kivel N, Köster U, Maugeri E A, Palchan-Hazan T, Quesada J M, Rochman D, Schumann D, Weissman L, Aberle O, Amaducci S, Andrzejewski J, Audouin L, Bécares V, Bacak M, Balibrea J, Barak A, Barbagallo M, Barros S, Bečvář F, Beinrucker C, Berkovits D, Berthoumieux E, Billowes J, Bosnar D, Brugger M, Buzaglo Y, Caamaño M, Calviño F, Calviani M, Cano-Ott D, Cardella R, Casanovas A, Castelluccio D M, Cerutti F, Chen Y H, Chiaveri E, Colonna N, Cortés G, Cortés-Giraldo M A, Cosentino L, Dafna H, Damone A, Diakaki M, Dietz M, Dupont E, Durán I, Eisen Y, Fernández-Domínguez B, Ferrari A, Ferreira P, Finocchiaro P, Furman V, Göbel K, García A R, Gawlik A, Glodariu T, Gonçalves I F, González-Romero E, Goverdovski A, Griesmayer E, Gunsing F, Harada H, Heftrich T, Heyse J, Hirsh T, Jenkins D G, Jericha E, Käppeler F, Kadi Y, Kaizer B, Katabuchi T, Kavrigin P, Ketlerov V, Khryachkov V, Kijel D, Kimura A, Kokkoris M, Kriesel A, Krtička M, Leal-Cidoncha E, Lederer-Woods C, Leeb H, Lo Meo S, Lonsdale S J, Losito R, Macina D, Manna A, Marganiec J, Martínez T, Massimi C, Mastinu P, Mastromarco M, Matteucci F, Mendoza E, Mengoni A, Milazzo P M, Millán-Callado M A, Mingrone F, Mirea M, Montesano S, Musumarra A, Nolte R, Oprea A, Patronis N, Pavlik A, Perkowski J, Piersanti L, Porras I, Praena J, Rajeev K, Rauscher T, Reifarth R, Rodríguez-González T, Rout P C, Rubbia C, Ryan J A, Sabaté-Gilarte M, Saxena A, Schillebeeckx P, Schmidt S, Shor A, Sedyshev P, Smith A G, Stamatopoulos A, Tagliente G, Tain J L, Tarifeño-Saldivia A, Tassan-Got L, Tsinganis A, Valenta S, Vannini G, Variale V, Vaz P, Ventura A, Vlachoudis V, Vlastou R, Wallner A, Warren S, Weigand M, Weiss C, Wolf C, Woods P J, Wright T, Žugec P
Universidad de Sevilla, Seville, Spain.
Centro Nacional de Aceleradores (CNA) (Universidad de Sevilla-Junta de Andalucía-CSIC), Seville, Spain.
Phys Rev Lett. 2020 Oct 2;125(14):142701. doi: 10.1103/PhysRevLett.125.142701.
The neutron capture cross sections of several unstable nuclides acting as branching points in the s process are crucial for stellar nucleosynthesis studies. The unstable ^{171}Tm (t_{1/2}=1.92 yr) is part of the branching around mass A∼170 but its neutron capture cross section as a function of the neutron energy is not known to date. In this work, following the production for the first time of more than 5 mg of ^{171}Tm at the high-flux reactor Institut Laue-Langevin in France, a sample was produced at the Paul Scherrer Institute in Switzerland. Two complementary experiments were carried out at the neutron time-of-flight facility (n_TOF) at CERN in Switzerland and at the SARAF liquid lithium target facility at Soreq Nuclear Research Center in Israel by time of flight and activation, respectively. The result of the time-of-flight experiment consists of the first ever set of resonance parameters and the corresponding average resonance parameters, allowing us to make an estimation of the Maxwellian-averaged cross sections (MACS) by extrapolation. The activation measurement provides a direct and more precise measurement of the MACS at 30 keV: 384(40) mb, with which the estimation from the n_TOF data agree at the limit of 1 standard deviation. This value is 2.6 times lower than the JEFF-3.3 and ENDF/B-VIII evaluations, 25% lower than that of the Bao et al. compilation, and 1.6 times larger than the value recommended in the KADoNiS (v1) database, based on the only previous experiment. Our result affects the nucleosynthesis at the A∼170 branching, namely, the ^{171}Yb abundance increases in the material lost by asymptotic giant branch stars, providing a better match to the available pre-solar SiC grain measurements compared to the calculations based on the current JEFF-3.3 model-based evaluation.
几种作为s过程分支点的不稳定核素的中子俘获截面对于恒星核合成研究至关重要。不稳定的(^{171}Tm)(半衰期(t_{1/2}=1.92)年)是质量数(A\sim170)附近分支的一部分,但迄今为止其作为中子能量函数的中子俘获截面尚不清楚。在这项工作中,继在法国劳厄 - 朗之万研究所高通量反应堆首次生产出超过5毫克的(^{171}Tm)之后,在瑞士保罗谢尔研究所制备了一个样品。分别在瑞士欧洲核子研究中心的中子飞行时间设施(n_TOF)和以色列索雷克核研究中心的萨拉夫液态锂靶设施上,通过飞行时间法和活化法进行了两个互补实验。飞行时间实验的结果包括有史以来第一组共振参数和相应的平均共振参数,使我们能够通过外推法估算麦克斯韦平均截面(MACS)。活化测量提供了对30keV下MACS的直接且更精确的测量值:384(40)毫靶,n_TOF数据的估算值在1个标准差范围内与之相符。该值比JEFF - 3.3和ENDF/B - VIII评估值低2.6倍,比鲍等人的汇编值低25%,比基于之前唯一实验的KADoNiS(v1)数据库中推荐的值大1.6倍。我们的结果影响了(A\sim170)分支处的核合成,即渐近巨星分支恒星损失物质中(^{171}Yb)丰度增加,与基于当前JEFF - 3.3模型评估的计算相比,能更好地匹配现有的前太阳SiC颗粒测量结果。