Casanovas-Hoste A, Domingo-Pardo C, Lerendegui-Marco J, Guerrero C, Tarifeño-Saldivia A, Krtička M, Pignatari M, Calviño F, Schumann D, Heinitz S, Dressler R, Köster U, Aberle O, Andrzejewski J, Audouin L, Bécares V, Bacak M, Balibrea-Correa J, Barbagallo M, Barros S, Bečvář F, Beinrucker C, Berthoumieux E, Billowes J, Bosnar D, Brugger M, Caamaño M, Calviani M, Cano-Ott D, Cardella R, Castelluccio D M, Cerutti F, Chen Y H, Chiaveri E, Colonna N, Cortés G, Cortés-Giraldo M A, Cosentino L, Damone L A, Diakaki M, Dupont E, Durán I, Fernández-Domínguez B, Ferrari A, Ferreira P, Finocchiaro P, Furman V, Göbel K, García A R, Gawlik-Ramięga A, Glodariu T, Gonçalves I F, González-Romero E, Goverdovski A, Griesmayer E, Gunsing F, Harada H, Heftrich T, Heyse J, Jenkins D G, Jericha E, Käppeler F, Kadi Y, Katabuchi T, Kavrigin P, Ketlerov V, Khryachkov V, Kimura A, Kivel N, Kokkoris M, Leal-Cidoncha E, Lederer-Woods C, Leeb H, Lo Meo S, Lonsdale S J, Losito R, Macina D, Marganiec J, Martínez T, Massimi C, Mastinu P, Mastromarco M, Matteucci F, Maugeri E A, Mendoza E, Mengoni A, Milazzo P M, Mingrone F, Mirea M, Montesano S, Musumarra A, Nolte R, Oprea A, Patronis N, Pavlik A, Perkowski J, Porras I, Praena J, Quesada J M, Rajeev K, Rauscher T, Reifarth R, Riego-Perez A, Romanets Y, Rout P C, Rubbia C, Ryan J A, Sabaté-Gilarte M, Saxena A, Schillebeeckx P, Schmidt S, Sedyshev P, Smith A G, Stamatopoulos A, Tagliente G, Tain J L, Tassan-Got L, Tsinganis A, Valenta S, Vannini G, Variale V, Vaz P, Ventura A, Vlachoudis V, Vlastou R, Wallner A, Warren S, Weigand M, Weiss C, Wolf C, Woods P J, Wright T, Žugec P
Institut de Tècniques Energètiques (INTE)-Universitat Politècnica de Catalunya, Barcelona, Spain.
<a href="https://ror.org/017xch102">Instituto de Física Corpuscular</a>, CSIC-Universidad de Valencia, Valencia, Spain.
Phys Rev Lett. 2024 Aug 2;133(5):052702. doi: 10.1103/PhysRevLett.133.052702.
Asymptotic giant branch stars are responsible for the production of most of the heavy isotopes beyond Sr observed in the solar system. Among them, isotopes shielded from the r-process contribution by their stable isobars are defined as s-only nuclei. For a long time the abundance of ^{204}Pb, the heaviest s-only isotope, has been a topic of debate because state-of-the-art stellar models appeared to systematically underestimate its solar abundance. Besides the impact of uncertainties from stellar models and galactic chemical evolution simulations, this discrepancy was further obscured by rather divergent theoretical estimates for the neutron capture cross section of its radioactive precursor in the neutron-capture flow, ^{204}Tl (t_{1/2}=3.78 yr), and by the lack of experimental data on this reaction. We present the first ever neutron capture measurement on ^{204}Tl, conducted at the CERN neutron time-of-flight facility n_TOF, employing a sample of only 9 mg of ^{204}Tl produced at the Institute Laue Langevin high flux reactor. By complementing our new results with semiempirical calculations we obtained, at the s-process temperatures of kT≈8 keV and kT≈30 keV, Maxwellian-averaged cross sections (MACS) of 580(168) mb and 260(90) mb, respectively. These figures are about 3% lower and 20% higher than the corresponding values widely used in astrophysical calculations, which were based only on theoretical calculations. By using the new ^{204}Tl MACS, the uncertainty arising from the ^{204}Tl(n,γ) cross section on the s-process abundance of ^{204}Pb has been reduced from ∼30% down to +8%/-6%, and the s-process calculations are in agreement with the latest solar system abundance of ^{204}Pb reported by K. Lodders in 2021.
渐近巨星分支恒星是太阳系中观测到的大多数比锶重的同位素产生的原因。其中,通过其稳定同量异位素免受r过程贡献影响的同位素被定义为仅s过程核素。长期以来,最重的仅s过程同位素(^{204}Pb)的丰度一直是一个争论的话题,因为最先进的恒星模型似乎系统性地低估了它在太阳中的丰度。除了恒星模型和银河系化学演化模拟不确定性的影响外,这种差异还因对其在中子俘获流中的放射性前驱体(^{204}Tl)(半衰期(t_{1/2}=3.78)年)的中子俘获截面的理论估计差异很大,以及缺乏该反应的实验数据而进一步模糊。我们首次在欧洲核子研究中心的中子飞行时间设施n_TOF上对(^{204}Tl)进行了中子俘获测量,使用的是在劳厄 - 朗之万研究所高通量反应堆产生的仅9毫克(^{204}Tl)样本。通过将我们的新结果与我们获得的半经验计算相结合,在(kT≈8)keV和(kT≈30)keV的s过程温度下,麦克斯韦平均截面(MACS)分别为580(168)毫靶和260(90)毫靶。这些数值分别比仅基于理论计算的天体物理计算中广泛使用的相应值低约3%和高20%。通过使用新的(^{204}Tl) MACS,(^{204}Tl(n,γ))截面在(^{204}Pb)的s过程丰度上产生的不确定性已从约30%降至+8% / -6%,并且s过程计算与K. Lodders在2021年报告的(^{204}Pb)的最新太阳系丰度一致。