Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, California 90089, USA.
Phys Rev Lett. 2020 Oct 2;125(14):148101. doi: 10.1103/PhysRevLett.125.148101.
Biological microfilaments exhibit a variety of synchronization modes. Recent experiments observed that a pair of isolated eukaryotic flagella, coupled solely via the fluid medium, display synchrony at nontrivial phase lags in addition to in-phase and antiphase synchrony. Using an elastohydrodynamic filament model in conjunction with numerical simulations and a Floquet-type theoretical analysis, we demonstrate that it is possible to reach multiple synchronization states by varying the intrinsic activity of the filament and the strength of hydrodynamic coupling between the two filaments. Then, we derive an evolution equation for the phase difference between the two filaments at weak coupling, and use a Kuramoto-style phase sensitivity analysis to reveal the nature of the bifurcations underlying the transitions between these different synchronized states.
生物微丝表现出多种同步模式。最近的实验观察到,一对仅通过流体介质耦合的分离的真核鞭毛,除了同相和反相同步外,还显示出非平凡的相位滞后同步。我们使用弹性流体力学丝模型结合数值模拟和 Floquet 型理论分析,证明通过改变丝的固有活性和两根丝之间的流体动力耦合强度,可以达到多种同步状态。然后,我们在弱耦合下推导出两根丝之间的相位差的演化方程,并使用 Kuramoto 风格的相位灵敏度分析来揭示这些不同同步状态之间的转变所基于的分岔的性质。