Université Côte d'Azur, Inria, CNRS, LJAD, McTAO team, Sophia Antipolis, France.
Department of Mathematics, University of York, York YO10 5DD, UK
J R Soc Interface. 2018 Jul;15(144). doi: 10.1098/rsif.2018.0235.
The inertialess fluid-structure interactions of active and passive inextensible filaments and slender-rods are ubiquitous in nature, from the dynamics of semi-flexible polymers and cytoskeletal filaments to cellular mechanics and flagella. The coupling between the geometry of deformation and the physical interaction governing the dynamics of bio-filaments is complex. Governing equations negotiate elastohydrodynamical interactions with non-holonomic constraints arising from the filament inextensibility. Such elastohydrodynamic systems are structurally convoluted, prone to numerical errors, thus requiring penalization methods and high-order spatio-temporal propagators. The asymptotic coarse-graining formulation presented here exploits the momentum balance in the asymptotic limit of small rod-like elements which are integrated semi-analytically. This greatly simplifies the elastohydrodynamic interactions and overcomes previous numerical instability. The resulting matricial system is straightforward and intuitive to implement, and allows for a fast and efficient computation, more than a hundred times faster than previous schemes. Only basic knowledge of systems of linear equations is required, and implementation achieved with any solver of choice. Generalizations for complex interaction of multiple rods, Brownian polymer dynamics, active filaments and non-local hydrodynamics are also straightforward. We demonstrate these in four examples commonly found in biological systems, including the dynamics of filaments and flagella. Three of these systems are novel in the literature. We additionally provide a Matlab code that can be used as a basis for further generalizations.
无惯性的活性和非活性不可延展纤维和细棒的流固耦合相互作用在自然界中无处不在,从半柔性聚合物和细胞骨架丝的动力学到细胞力学和鞭毛。变形几何与控制生物纤维动力学的物理相互作用之间的耦合非常复杂。控制方程通过非完整约束来协商弹性流体动力相互作用,这些约束来自纤维的不可延展性。这种弹性流体动力学系统结构复杂,容易出现数值误差,因此需要惩罚方法和高阶时空传播器。这里提出的渐近粗粒化公式利用了小棒状元素在小尺寸极限下的动量平衡,这些元素通过半解析方法进行积分。这大大简化了弹性流体动力相互作用,并克服了以前的数值不稳定性。得到的矩阵系统简单直观,易于实现,并且允许快速高效的计算,比以前的方案快一百多倍。只需要线性方程组的基本知识,并且可以使用任何选择的求解器来实现。对于多个棒的复杂相互作用、布朗聚合物动力学、活性纤维和非局部流体动力学的推广也很简单。我们在四个常见于生物系统的示例中展示了这些,包括纤维和鞭毛的动力学。其中三个系统在文献中是新颖的。我们还提供了一个 Matlab 代码,可以用作进一步推广的基础。