Suppr超能文献

细杆、生物纤维和鞭毛的渐近粗粒化公式。

The asymptotic coarse-graining formulation of slender-rods, bio-filaments and flagella.

机构信息

Université Côte d'Azur, Inria, CNRS, LJAD, McTAO team, Sophia Antipolis, France.

Department of Mathematics, University of York, York YO10 5DD, UK

出版信息

J R Soc Interface. 2018 Jul;15(144). doi: 10.1098/rsif.2018.0235.

Abstract

The inertialess fluid-structure interactions of active and passive inextensible filaments and slender-rods are ubiquitous in nature, from the dynamics of semi-flexible polymers and cytoskeletal filaments to cellular mechanics and flagella. The coupling between the geometry of deformation and the physical interaction governing the dynamics of bio-filaments is complex. Governing equations negotiate elastohydrodynamical interactions with non-holonomic constraints arising from the filament inextensibility. Such elastohydrodynamic systems are structurally convoluted, prone to numerical errors, thus requiring penalization methods and high-order spatio-temporal propagators. The asymptotic coarse-graining formulation presented here exploits the momentum balance in the asymptotic limit of small rod-like elements which are integrated semi-analytically. This greatly simplifies the elastohydrodynamic interactions and overcomes previous numerical instability. The resulting matricial system is straightforward and intuitive to implement, and allows for a fast and efficient computation, more than a hundred times faster than previous schemes. Only basic knowledge of systems of linear equations is required, and implementation achieved with any solver of choice. Generalizations for complex interaction of multiple rods, Brownian polymer dynamics, active filaments and non-local hydrodynamics are also straightforward. We demonstrate these in four examples commonly found in biological systems, including the dynamics of filaments and flagella. Three of these systems are novel in the literature. We additionally provide a Matlab code that can be used as a basis for further generalizations.

摘要

无惯性的活性和非活性不可延展纤维和细棒的流固耦合相互作用在自然界中无处不在,从半柔性聚合物和细胞骨架丝的动力学到细胞力学和鞭毛。变形几何与控制生物纤维动力学的物理相互作用之间的耦合非常复杂。控制方程通过非完整约束来协商弹性流体动力相互作用,这些约束来自纤维的不可延展性。这种弹性流体动力学系统结构复杂,容易出现数值误差,因此需要惩罚方法和高阶时空传播器。这里提出的渐近粗粒化公式利用了小棒状元素在小尺寸极限下的动量平衡,这些元素通过半解析方法进行积分。这大大简化了弹性流体动力相互作用,并克服了以前的数值不稳定性。得到的矩阵系统简单直观,易于实现,并且允许快速高效的计算,比以前的方案快一百多倍。只需要线性方程组的基本知识,并且可以使用任何选择的求解器来实现。对于多个棒的复杂相互作用、布朗聚合物动力学、活性纤维和非局部流体动力学的推广也很简单。我们在四个常见于生物系统的示例中展示了这些,包括纤维和鞭毛的动力学。其中三个系统在文献中是新颖的。我们还提供了一个 Matlab 代码,可以用作进一步推广的基础。

相似文献

3
Rods-on-string idealization captures semiflexible filament dynamics.串珠模型理想化地捕捉了半柔性细丝动力学。
Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Jan;79(1 Pt 1):011906. doi: 10.1103/PhysRevE.79.011906. Epub 2009 Jan 13.
4
Multisynchrony in Active Microfilaments.活跃微丝中的多同步性。
Phys Rev Lett. 2020 Oct 2;125(14):148101. doi: 10.1103/PhysRevLett.125.148101.
6
Swarm behavior of self-propelled rods and swimming flagella.自推进杆和游动鞭毛的群体行为。
Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Sep;82(3 Pt 1):031904. doi: 10.1103/PhysRevE.82.031904. Epub 2010 Sep 15.
8
Brownian microhydrodynamics of active filaments.活性细丝的布朗微流体动力学
Soft Matter. 2015 Dec 21;11(47):9073-85. doi: 10.1039/c5sm02021b.
10
Forward and inverse problems in the mechanics of soft filaments.柔性细丝力学中的正问题与逆问题。
R Soc Open Sci. 2018 Jun 13;5(6):171628. doi: 10.1098/rsos.171628. eCollection 2018 Jun.

本文引用的文献

2
Human sperm swimming in a high viscosity mucus analogue.人类精子在高粘度黏液类似物中游动。
J Theor Biol. 2018 Jun 7;446:1-10. doi: 10.1016/j.jtbi.2018.02.013. Epub 2018 Feb 17.
4
Nonlinear amplitude dynamics in flagellar beating.鞭毛摆动中的非线性振幅动力学。
R Soc Open Sci. 2017 Mar 8;4(3):160698. doi: 10.1098/rsos.160698. eCollection 2017 Mar.
5
Identification of internal properties of fibres and micro-swimmers.纤维和微型游动器内部特性的识别。
Proc Math Phys Eng Sci. 2017 Jan;473(2197):20160517. doi: 10.1098/rspa.2016.0517.
9
Optimal design of Purcell's three-link swimmer.珀塞尔三链游动体的优化设计。
Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Feb;91(2):023012. doi: 10.1103/PhysRevE.91.023012. Epub 2015 Feb 13.
10
Simple model of a planar undulating magnetic microswimmer.平面波动磁性微游动器的简单模型。
Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Jul;90(1):013012. doi: 10.1103/PhysRevE.90.013012. Epub 2014 Jul 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验