Lara-Canche A R, Garcia-Gutierrez D F, Torres-Gomez N, Reyes-Gonzalez J E, Bahena-Uribe D, Sepulveda-Guzman S, Hernandez-Calderon I, García Gutierrez D I
Universidad Autónoma de Nuevo León, UANL. Facultad de Ingeniería Mecánica y Eléctrica, FIME, AV. Universidad S/N Cd. Universitaria San Nicolás de los Garza, Nuevo León C.P 66450, México.
Uuniversidad Autónoma de Nuevo León, Centro de Innovación, Investigación y Desarrollo en Ingeniería y Tecnología, CIDIIT, Av. Alianza Sur 101, Apodaca, Nuevo León C.P 65000, México.
Nanotechnology. 2021 Jan 29;32(5):055604. doi: 10.1088/1361-6528/abc209.
Nanostructured hybrid materials (NHMs) are promising candidates to improve the performance of several materials in different applications. In the case of optoelectronic technologies, the ability to tune the optical absorption of such NHMs is an appealing feature. Along with the capacity to transform the absorbed light into charge carriers (CC), and their consequently efficient transport to the different electrodes. In this regard, NHM based on graphene-like structures and semiconductor QDs are appealing candidates, assuming the NHMs retain the light absorption and CC photogeneration properties of semiconductor QDs, and the excellent CC transport properties displayed by graphene-like materials. In the current work a solution-processed NHM using PbS quantum dots (QDs) and graphene oxide (GO) was fabricated in a layer-by-layer configuration by dip-coating. Afterwards, these NHMs were reduced by thermal or chemical methods. Reduction process had a direct impact on the final optoelectronic properties displayed by the NHMs. All reduced samples displayed a decrement in their resistivity, particularly the sample chemically reduced, displaying a 10 fold decrease; mainly attributed to N-doping in the reduced graphene oxide (rGO). The optical absorption coefficients also showed a dependence on the rGO's reduction degree, with reduced samples displaying higher values, and sample thermally reduced at 300 °C showing the highest absorption coefficient, due to the combined absorption of unaltered PbS QDs and the appearance of sp regions within rGO. The photogenerated current increased in most reduced samples, displaying the highest photocurrent the sample reduced at 400 °C, presenting a 2500-fold increment compared to the NHM before reduction, attributed to an enhanced CC transfer from PbS QDs to rGO, as a consequence of an improved band alignment between them. These results show clear evidence on how the optoelectronic properties of NHMs based on semiconductor nanoparticles and rGO, can be tuned based on their configuration and the reduction process parameters.
纳米结构混合材料(NHMs)是有望在不同应用中改善多种材料性能的候选材料。在光电子技术领域,调节此类NHMs光吸收的能力是一个吸引人的特性。同时,还要具备将吸收的光转化为电荷载流子(CC)的能力,以及随后将其高效传输到不同电极的能力。在这方面,基于类石墨烯结构和半导体量子点的NHM是有吸引力的候选材料,前提是NHMs保留半导体量子点的光吸收和CC光生特性,以及类石墨烯材料所展现的优异CC传输特性。在当前工作中,通过浸涂法以逐层配置制备了一种使用硫化铅量子点(QDs)和氧化石墨烯(GO)的溶液处理NHM。之后,通过热法或化学法对这些NHMs进行还原。还原过程对NHMs最终的光电子性能有直接影响。所有还原后的样品电阻率均有所降低,特别是化学还原的样品,电阻率降低了10倍;这主要归因于还原氧化石墨烯(rGO)中的氮掺杂。光吸收系数也显示出对rGO还原程度的依赖性,还原后的样品显示出更高的值,并且在300°C下热还原的样品显示出最高的吸收系数,这是由于未改变的硫化铅量子点的联合吸收以及rGO内sp区域的出现。大多数还原后的样品光生电流增加,在400°C下还原的样品显示出最高的光电流与还原前的NHM相比增加了2500倍,这归因于硫化铅量子点与rGO之间的能带排列改善,导致CC从硫化铅量子点向rGO的转移增强。这些结果清楚地证明了基于半导体纳米颗粒和rGO的NHMs的光电子性能如何根据其配置和还原过程参数进行调节。