University of Texas Medical Branch, Galveston, TX, USA.
Mod Pathol. 2021 Mar;34(3):522-531. doi: 10.1038/s41379-020-00700-x. Epub 2020 Oct 16.
Coronavirus disease 2019 (COVID-19) is a novel disease resulting from infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which has quickly risen since the beginning of 2020 to become a global pandemic. As a result of the rapid growth of COVID-19, hospitals are tasked with managing an increasing volume of these cases with neither a known effective therapy, an existing vaccine, nor well-established guidelines for clinical management. The need for actionable knowledge amidst the COVID-19 pandemic is dire and yet, given the urgency of this illness and the speed with which the healthcare workforce must devise useful policies for its management, there is insufficient time to await the conclusions of detailed, controlled, prospective clinical research. Thus, we present a retrospective study evaluating laboratory data and mortality from patients with positive RT-PCR assay results for SARS-CoV-2. The objective of this study is to identify prognostic serum biomarkers in patients at greatest risk of mortality. To this end, we develop a machine learning model using five serum chemistry laboratory parameters (c-reactive protein, blood urea nitrogen, serum calcium, serum albumin, and lactic acid) from 398 patients (43 expired and 355 non-expired) for the prediction of death up to 48 h prior to patient expiration. The resulting support vector machine model achieved 91% sensitivity and 91% specificity (AUC 0.93) for predicting patient expiration status on held-out testing data. Finally, we examine the impact of each feature and feature combination in light of different model predictions, highlighting important patterns of laboratory values that impact outcomes in SARS-CoV-2 infection.
2019 年冠状病毒病(COVID-19)是一种新型疾病,由严重急性呼吸系统综合征冠状病毒 2(SARS-CoV-2)感染引起,自 2020 年初以来迅速蔓延,成为全球大流行。由于 COVID-19 病例的迅速增加,医院需要管理越来越多的此类病例,但目前尚无有效的治疗方法、已有的疫苗,也没有明确的临床管理指南。在 COVID-19 大流行期间,急需可采取行动的知识,但鉴于这种疾病的紧迫性以及医疗保健工作者必须迅速制定管理措施的速度,没有足够的时间等待详细、对照、前瞻性临床研究的结论。因此,我们进行了一项回顾性研究,评估了 SARS-CoV-2 阳性 RT-PCR 检测结果患者的实验室数据和死亡率。本研究的目的是确定死亡率最高的患者的预后血清生物标志物。为此,我们使用 398 名患者(43 名死亡和 355 名存活)的五个血清化学实验室参数(C 反应蛋白、血尿素氮、血清钙、血清白蛋白和乳酸)构建了一个机器学习模型,用于预测患者在死亡前 48 小时的死亡情况。所得支持向量机模型在验证数据上实现了 91%的灵敏度和 91%的特异性(AUC 0.93),用于预测患者的死亡状态。最后,我们根据不同的模型预测,检查了每个特征和特征组合的影响,突出了对 SARS-CoV-2 感染结局有影响的重要实验室值模式。