Department of Chemistry and Biomedical Sciences, Linnaeus University, Kalmar, Sweden.
Department of Biochemistry, Albert Einstein College of Medicine, New York, New York, USA.
Proteins. 2021 Mar;89(3):311-321. doi: 10.1002/prot.26016. Epub 2020 Oct 26.
Machupo virus, known to cause hemorrhagic fevers, enters human cells via binding with its envelope glycoprotein to transferrin receptor 1 (TfR). Similarly, the receptor interactions have been explored in biotechnological applications as a molecular system to ferry therapeutics across the cellular membranes and through the impenetrable blood-brain barrier that effectively blocks any such delivery into the brain. Study of the experimental structure of Machupo virus glycoprotein 1 (MGP1) in complex with TfR and glycoprotein sequence homology has identified some residues at the interface that influence binding. There are, however, no studies that have attempted to optimize the binding potential between MGP1 and TfR. In pursuits for finding therapeutic solutions for the New World arenaviruses, and to gain a greater understanding of MGP1 interactions with TfR, it is crucial to understand the structure-sequence relationship driving the interface formation. By displaying MGP1 on yeast surface we have examined the contributions of individual residues to the binding of solubilized ectodomain of TfR. We identified MGP1 binding hot spot residues, assessed the importance of posttranslational N-glycan modifications, and used a selection with random mutagenesis for affinity maturation. We show that the optimized MGP1 variants can bind more strongly to TfR than the native MGP1, and there is an MGP1 sequence that retains binding in the absence of glycosylation, but with the addition of further amino acid substitutions. The engineered variants can be used to probe cellular internalization or the blood-brain barrier crossing to achieve greater understanding of TfR mediated internalization.
马丘波病毒已知会引起出血热,它通过与包膜糖蛋白结合转铁蛋白受体 1(TfR)进入人体细胞。同样,受体相互作用也在生物技术应用中得到了探索,作为一种分子系统,将治疗药物输送穿过细胞膜,并穿过有效的阻止任何此类药物进入大脑的血脑屏障。对马丘波病毒糖蛋白 1(MGP1)与 TfR 复合物的实验结构和糖蛋白序列同源性的研究确定了一些影响结合的界面残基。然而,还没有研究试图优化 MGP1 和 TfR 之间的结合潜力。在寻找针对新世界沙粒病毒的治疗方法,并更深入地了解 MGP1 与 TfR 的相互作用时,了解驱动界面形成的结构-序列关系至关重要。通过在酵母表面展示 MGP1,我们研究了单个残基对 TfR 可溶性外域结合的贡献。我们确定了 MGP1 结合热点残基,评估了翻译后 N-糖基化修饰的重要性,并使用随机诱变进行了亲和力成熟选择。我们表明,优化后的 MGP1 变体与 TfR 的结合能力比天然 MGP1 更强,并且存在一种在没有糖基化的情况下保留结合的 MGP1 序列,但添加了进一步的氨基酸取代。这些工程变体可用于探测细胞内化或血脑屏障穿越,以更深入地了解 TfR 介导的内化。