Suppr超能文献

多壳扩散磁共振成像中用于运动校正的分散切片 SHARD 重建。

Scattered slice SHARD reconstruction for motion correction in multi-shell diffusion MRI.

机构信息

Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK; Biomedical Engineering Department, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK; Department of Electrical Engineering, ESAT/PSI, KU Leuven, Leuven, Belgium.

Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK; Biomedical Engineering Department, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK; Biomedical Image Technologies, ETSI Telecomunicación, Universidad Politécnica de Madrid & CIBER-BBN, Madrid, Spain.

出版信息

Neuroimage. 2021 Jan 15;225:117437. doi: 10.1016/j.neuroimage.2020.117437. Epub 2020 Oct 14.

Abstract

Diffusion MRI offers a unique probe into neural microstructure and connectivity in the developing brain. However, analysis of neonatal brain imaging data is complicated by inevitable subject motion, leading to a series of scattered slices that need to be aligned within and across diffusion-weighted contrasts. Here, we develop a reconstruction method for scattered slice multi-shell high angular resolution diffusion imaging (HARDI) data, jointly estimating an uncorrupted data representation and motion parameters at the slice or multiband excitation level. The reconstruction relies on data-driven representation of multi-shell HARDI data using a bespoke spherical harmonics and radial decomposition (SHARD), which avoids imposing model assumptions, thus facilitating to compare various microstructure imaging methods in the reconstructed output. Furthermore, the proposed framework integrates slice-level outlier rejection, distortion correction, and slice profile correction. We evaluate the method in the neonatal cohort of the developing Human Connectome Project (650 scans). Validation experiments demonstrate accurate slice-level motion correction across the age range and across the range of motion in the population. Results in the neonatal data show successful reconstruction even in severely motion-corrupted subjects. In addition, we illustrate how local tissue modelling can extract advanced microstructure features such as orientation distribution functions from the motion-corrected reconstructions.

摘要

扩散 MRI 为研究发育中大脑的神经微观结构和连接提供了独特的手段。然而,新生儿脑成像数据的分析受到不可避免的主体运动的影响,导致需要在扩散加权对比的内部和跨部分配一系列分散的切片。在这里,我们为分散的切片多壳高角分辨率扩散成像(HARDI)数据开发了一种重建方法,联合估计了在切片或多频带激发水平上无干扰的数据表示和运动参数。该重建依赖于使用定制的球谐函数和径向分解(SHARD)对多壳 HARDI 数据进行数据驱动表示,从而避免了强加模型假设,因此有利于在重建输出中比较各种微观结构成像方法。此外,所提出的框架集成了切片级异常值剔除、失真校正和切片轮廓校正。我们在发育中的人类连接组计划(HCP)的新生儿队列中评估了该方法(650 次扫描)。验证实验表明,该方法在整个年龄范围和人群运动范围上都能准确地进行切片级运动校正。新生儿数据的结果表明,即使在运动严重干扰的情况下,也能成功重建。此外,我们还说明了局部组织建模如何从运动校正的重建中提取高级微观结构特征,例如方向分布函数。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0315/7779423/cf41b33edfb7/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验