Suppr超能文献

应用基质辅助激光解吸电离飞行时间质谱技术鉴定无乳链球菌;完善数据库以提高鉴定准确性。

Identification of Streptococcus dysgalactiae using matrix-assisted laser desorption/ionization-time of flight mass spectrometry; refining the database for improved identification.

机构信息

Department of Microbiology, P.b. 1400, Haukeland University Hospital, 5021, Bergen, Norway.

Department of Medicine, Haukeland University Hospital, 5021, Bergen, Norway.

出版信息

Diagn Microbiol Infect Dis. 2021 Jan;99(1):115207. doi: 10.1016/j.diagmicrobio.2020.115207. Epub 2020 Sep 22.

Abstract

Matrix-assisted laser desorption/ionization time of flight (MALDI-ToF) has revolutionized bacterial identification. However, the phylogenetic resolution is still insufficient for discerning several β-haemolytic streptococcal species. We aimed to improve the diagnostic performance of MALDI-ToF through manual curation of the reference spectra in Brukers Compass Library DB-7854. Before intervention, only 133 out of 217 (62%) Streptococcus dysgalactiae isolates were successfully identified to the species level, 83 isolates were identified to the genus level as either S. dysgalactiae, S. pyogenes or S. canis, and one S. dysgalactiae isolate was wrongly identified as S. canis. All 109 S. canis isolates were successfully identified to the species level. Removal of three reference spectra from the database significantly improved the identification of S. dysgalactiae to 94%, without compromising identification of S. canis. This illustrates the advantage of refinement of the reference database in order to improve the analytic precision of MALDI-ToF.

摘要

基质辅助激光解吸电离飞行时间(MALDI-ToF)技术已经彻底改变了细菌鉴定。然而,对于区分几种β-溶血性链球菌种,其系统发育分辨率仍然不足。我们旨在通过对布鲁克 Compass Library DB-7854 中参考光谱进行手动编辑,从而提高 MALDI-ToF 的诊断性能。在干预之前,只有 217 株中的 133 株(62%)β-溶血性链球菌分离株被成功鉴定到种水平,83 株被鉴定为 S. dysgalactiae、S. pyogenes 或 S. canis,而 1 株 S. dysgalactiae 分离株被错误鉴定为 S. canis。所有 109 株 S. canis 分离株都被成功鉴定到种水平。从数据库中删除三个参考光谱,显著提高了 S. dysgalactiae 的鉴定率至 94%,而不影响 S. canis 的鉴定。这说明了细化参考数据库以提高 MALDI-ToF 分析精度的优势。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验