Department of Population Health Sciences, Weill Cornell Medical College, New York, NY, United States.
Department of Radiology, Weill Cornell Medical College, New York, NY, United States.
Neuroimage. 2021 Jan 15;225:117451. doi: 10.1016/j.neuroimage.2020.117451. Epub 2020 Oct 16.
We introduce the first-ever statistical framework for estimating the age of Multiple Sclerosis (MS) lesions from magnetic resonance imaging (MRI). Estimating lesion age is an important step when studying the longitudinal behavior of MS lesions and can be used in applications such as studying the temporal dynamics of chronic active MS lesions. Our lesion age estimation models use first order radiomic features over a lesion derived from conventional T1 (T1w) and T2 weighted (T2w) and fluid attenuated inversion recovery (FLAIR), T1w with gadolinium contrast (T1w+c), and Quantitative Susceptibility Mapping (QSM) MRI sequences as well as demographic information. For this analysis, we have a total of 32 patients with 53 new lesions observed at 244 time points. A one or two step random forest model for lesion age is fit on a training set using a lesion volume cutoff of 15 mm or 50 mm. We explore the performance of nine different modeling scenarios that included various combinations of the MRI sequences and demographic information and a one or two step random forest models, as well as simpler models that only uses the mean radiomic feature from each MRI sequence. The best performing model on a validation set is a model that uses a two-step random forest model on the radiomic features from all of the MRI sequences with demographic information using a lesion volume cutoff of 50 mm. This model has a mean absolute error of 7.23 months (95% CI: [6.98, 13.43]) and a median absolute error of 5.98 months (95% CI: [5.26, 13.25]) in the validation set. For this model, the predicted age and actual age have a statistically significant association (p-value <0.001) in the validation set.
我们介绍了首个用于从磁共振成像 (MRI) 估算多发性硬化症 (MS) 病变年龄的统计框架。在研究 MS 病变的纵向行为时,估算病变年龄是一个重要步骤,可用于研究慢性活动性 MS 病变的时间动态等应用。我们的病变年龄估计模型使用源自常规 T1(T1w)和 T2 加权(T2w)、液体衰减反转恢复(FLAIR)、T1w 钆对比(T1w+c)和定量磁化率映射(QSM)MRI 序列以及人口统计学信息的病变衍生的一阶放射组学特征。在这项分析中,我们共有 32 名患者,在 244 个时间点观察到 53 个新病变。使用病变体积截断值为 15 毫米或 50 毫米,在训练集上拟合用于病变年龄的一步或两步随机森林模型。我们探索了 9 种不同建模情况的性能,这些情况包括 MRI 序列和人口统计学信息的各种组合,以及一步或两步随机森林模型,以及仅使用每个 MRI 序列的平均放射组学特征的更简单模型。在验证集上表现最好的模型是使用两步随机森林模型对来自所有 MRI 序列的放射组学特征进行建模,并结合人口统计学信息,使用病变体积截断值为 50 毫米。该模型在验证集中的平均绝对误差为 7.23 个月(95%CI:[6.98, 13.43]),中位数绝对误差为 5.98 个月(95%CI:[5.26, 13.25])。对于该模型,预测年龄与实际年龄在验证集中具有统计学显著关联(p 值 <0.001)。