Suppr超能文献

半自动病灶检测联合定量磁化率图对新发及强化多发性硬化病灶的诊断准确性。

Diagnostic accuracy of semiautomatic lesion detection plus quantitative susceptibility mapping in the identification of new and enhancing multiple sclerosis lesions.

机构信息

Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Radiology, Weill Cornell Medicine, New York, NY, USA.

Department of Radiology, Weill Cornell Medicine, New York, NY, USA.

出版信息

Neuroimage Clin. 2018 Jan 28;18:143-148. doi: 10.1016/j.nicl.2018.01.013. eCollection 2018.

Abstract

PURPOSE

To evaluate the diagnostic accuracy of a novel non-contrast brain MRI method based on semiautomatic lesion detection using T2w FLAIR subtraction image, the statistical detection of change (SDC) algorithm (T2w + SDC), and quantitative susceptibility mapping (QSM). This method identifies new lesions and discriminates between enhancing and nonenhancing lesions in multiple sclerosis (MS).

METHODS

Thirty three MS patients who had MRIs at two different time points with at least one new Gd-enhancing lesion on the 2nd MRI were included in the study. For a reference standard, new lesions were identified by two neuroradiologists on T2w and post-Gd T1w images with the help of T2w + SDC. The diagnostic accuracy of the proposed method based on QSM and T2w + SDC lesion detection (T2w + SDC + QSM) for assessing lesion enhancement status was determined. Receiver operating characteristic (ROC) analysis was performed to compute the optimal lesion susceptibility cutoff value.

RESULTS

A total of 165 new lesions (54 enhancing, 111 nonenhancing) were identified. The sensitivity and specificity of T2w + SDC + QSM in predicting lesion enhancement status were 90.7% and 85.6%, respectively. For lesions ≥50 mm, ROC analysis showed an optimal QSM cutoff value of 13.5 ppb with a sensitivity of 88.4% and specificity of 88.6% (0.93, 95% CI, 0.87-0.99). For lesions ≥15 mm, the optimal QSM cutoff was 15.4 ppb with a sensitivity of 77.9% and specificity of 94.0% (0.93, 95% CI, 0.89-0.97).

CONCLUSION

The proposed T2w + SDC + QSM method is highly accurate for identifying and predicting the enhancement status of new MS lesions without the use of Gd injection.

摘要

目的

评估一种新型非对比脑 MRI 方法的诊断准确性,该方法基于 T2w FLAIR 减影图像、统计检测变化(SDC)算法(T2w+SDC)和定量磁化率映射(QSM)半自动检测病变。这种方法可以识别多发性硬化症(MS)中的新病变,并区分增强和非增强病变。

方法

本研究纳入了 33 名在两次不同时间点进行 MRI 检查的 MS 患者,其中第二次 MRI 至少有一个新的钆增强病灶。为了建立参考标准,新病变由两位神经放射科医生在 T2w 和 post-Gd T1w 图像上借助 T2w+SDC 来识别。根据 QSM 和 T2w+SDC 病变检测(T2w+SDC+QSM)评估病变增强状态的准确性,确定所提出方法的诊断准确性。进行了接收器操作特征(ROC)分析,以计算最佳病变磁化率截断值。

结果

共识别出 165 个新病变(54 个增强,111 个非增强)。T2w+SDC+QSM 预测病变增强状态的敏感性和特异性分别为 90.7%和 85.6%。对于≥50mm 的病变,ROC 分析显示最佳 QSM 截断值为 13.5ppb,敏感性为 88.4%,特异性为 88.6%(0.93,95%CI,0.87-0.99)。对于≥15mm 的病变,最佳 QSM 截断值为 15.4ppb,敏感性为 77.9%,特异性为 94.0%(0.93,95%CI,0.89-0.97)。

结论

该方法无需使用 Gd 注射即可高度准确地识别和预测新的 MS 病变的增强状态。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/08fc/5790036/b89b17e34219/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验