Suppr超能文献

掺杂钒的石墨相氮化碳在多功能应用中的研究进展:光电化学水分解和抗菌活性。

Vanadium-doped graphitic carbon nitride for multifunctional applications: Photoelectrochemical water splitting and antibacterial activities.

机构信息

School of Mechanical Engineering, Yeungnam University, Gyeongsan, 712749, South Korea.

Department of Microbiology, Yogi Vemana University, Kadapa, 516005, India.

出版信息

Chemosphere. 2021 Feb;264(Pt 2):128593. doi: 10.1016/j.chemosphere.2020.128593. Epub 2020 Oct 10.

Abstract

Bulk graphitic carbon nitride (g-C3N4) exhibits limited water splitting efficiency due todrawbacks including high charge recombination rate, low electrical conductivity, poor quantum efficiency, and few adsorption and active catalytic sites. Herein, we report V-doped g-C3N4 nanoarchitectures prepared via direct calcination of urea and ammonium metavanadate. The obtained V-doped g-C3N4 nanostructures not only improved the visible light absorption property but also increased the charge separation and transportation, resulting in extremely enhanced water splitting activity. The structural, morphological, and optical analysis results confirmed the successful incorporation of V into the host g-C3N4 material, and electrochemical impedance spectroscopy measurements revealed the charge carrier dynamics. Compared to the pristine g-C3N4 photoelectrode, the optimized 0.3 mol% V-doped g-C3N4 photoelectrode showed a considerably higher photocurrent density (0.80 mA cm-2). The enhancement of the catalytic performance could be attributed to the synergistic effects of prolonged light absorption, improved transfer of electrons and holes, and extra active catalytic sites for water splitting. Further, the optimized 0.3 mol% V-doped g-C3N4 sample showed an antibacterial activity higher than that of the undoped photocatalyst.

摘要

块状石墨相氮化碳(g-C3N4)由于存在电荷复合速率高、电导率低、量子效率低、吸附和活性催化位点少等缺点,其水分解效率有限。在此,我们报告了通过尿素和偏钒酸铵的直接煅烧制备的 V 掺杂 g-C3N4 纳米结构。所获得的 V 掺杂 g-C3N4 纳米结构不仅提高了可见光吸收性能,而且增加了电荷分离和输运,从而极大地提高了水分解活性。结构、形态和光学分析结果证实了 V 成功掺入到主体 g-C3N4 材料中,电化学阻抗谱测量揭示了载流子动力学。与原始 g-C3N4 光电极相比,优化的 0.3 mol% V 掺杂 g-C3N4 光电极表现出相当高的光电流密度(0.80 mA cm-2)。催化性能的增强可归因于光吸收的延长、电子和空穴转移的改善以及用于水分解的额外活性催化位点的协同作用。此外,优化的 0.3 mol% V 掺杂 g-C3N4 样品显示出比未掺杂光催化剂更高的抗菌活性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验