Department of Neurological Surgery, Karolinska Institutet, Nobels väg 6 Solna and Alfred Nobels Allé 8 Huddinge SE-171 77, Stockholm, Sweden.
Department of Neurological Surgery, University of Helsinki, 00100, Helsinki, Finland.
J Integr Neurosci. 2020 Sep 30;19(3):521-560. doi: 10.31083/j.jin.2020.03.0196.
The respiratory rhythm and pattern and sympathetic and parasympathetic outflows are generated by distinct, though overlapping, propriobulbar arrays of neuronal microcircuit oscillators constituting networks utilizing mutual excitatory and inhibitory neuronal interactions, residing principally within the metencephalon and myelencephalon, and modulated by synaptic influences from the cerebrum, thalamus, hypothalamus, cerebellum, and mesencephalon and ascending influences deriving from peripheral stimuli relayed by cranial nerve afferent axons. Though the respiratory and cardiovascular regulatory effector mechanisms utilize distinct generators, there exists significant overlap and interconnectivity amongst and between these oscillators and pathways, evidenced reciprocally by breathing modulation of sympathetic oscillations and sympathetic modulation of neural breathing. These coupling mechanisms are well-demonstrated coordinately in sympathetic- and respiratory-related central neuronal and efferent neurogram recordings and quantified by the findings of cross-correlation, spectra, and coherence analyses, combined with empirical interventions including lesioning and pharmacological agonist and antagonist microinjection studies, baroloading, barounloading, and hypoxic and/or hypercapnic peripheral and/or central chemoreceptor stimulation. Sympathetic and parasympathetic central neuronal and efferent neural discharge recordings evidence classic fast rhythms produced by propriobulbar neuronal networks located within the medullary division of the lateral tegmental field, coherent with cardiac sympathetic nerve discharge. These neural efferent nerve discharges coordinately evidence slow synchronous oscillations, constituted by Traube Hering (i.e., high frequency), Mayer wave (i.e., medium or low frequency), and vasogenic autorhythmicity (i.e., very low frequency) wave spectral bands. These oscillations contribute to coupling neural breathing, sympathetic oscillations, and parasympathetic cardiovagal premotoneuronal activity. The mechanisms underlying the origins of and coupling amongst, these waves remains to be unresolved.
呼吸节律和模式以及交感和副交感传出是由不同的,但重叠的,延髓和脊髓内的神经元微电路振荡器组成的固有延髓网络产生的,这些振荡器利用相互兴奋和抑制的神经元相互作用,主要位于中脑和延髓内,并受到来自大脑、丘脑、下丘脑、小脑和中脑的突触影响以及来自外周刺激的传入纤维的影响。尽管呼吸和心血管调节效应器机制利用不同的发生器,但这些振荡器和途径之间存在显著的重叠和相互连接,这一点可以通过呼吸对交感神经振荡的调制以及交感神经对神经呼吸的调制得到证明。这些耦合机制在交感神经和呼吸相关的中枢神经元和传出神经图记录中得到了很好的证明,并通过互相关、频谱和相干性分析以及经验干预(包括损伤和药理学激动剂和拮抗剂微注射研究、血压加载、血压卸载以及缺氧和/或高碳酸血症外周和/或中枢化学感受器刺激)进行了量化。交感和副交感中枢神经元和传出神经放电记录证据表明,位于外侧脑桥背侧的延髓部分的固有延髓神经元网络产生了经典的快速节律,与心脏交感神经放电一致。这些神经传出神经放电协调地产生缓慢的同步振荡,由 Traube Hering(即高频)、Mayer 波(即中频或低频)和血管源性自主节律性(即非常低频)波谱带组成。这些振荡有助于耦合神经呼吸、交感神经振荡和副交感心脏节前运动神经元活动。这些波的起源和耦合机制仍未解决。