Suppr超能文献

基于新型流形学习的虚拟样本生成,用于小数据条件下软传感器的优化

Novel manifold learning based virtual sample generation for optimizing soft sensor with small data.

作者信息

Zhang Xiao-Han, Xu Yuan, He Yan-Lin, Zhu Qun-Xiong

机构信息

College of Information Science & Technology, Beijing University of Chemical Technology, Beijing, 100029, China; Engineering Research Center of Intelligent PSE, Ministry of Education of China, Beijing 100029, China.

College of Information Science & Technology, Beijing University of Chemical Technology, Beijing, 100029, China; Engineering Research Center of Intelligent PSE, Ministry of Education of China, Beijing 100029, China.

出版信息

ISA Trans. 2021 Mar;109:229-241. doi: 10.1016/j.isatra.2020.10.006. Epub 2020 Oct 9.

Abstract

Due to the extremely complex mechanism and strong non-linear characteristics of industrial processes, data-driven soft sensor technologies play a key role in the intelligent measurement of process industries. However, the information of the collected process data in the steady stage is quite limited and unreliable, causing the small sample problem. As a result, it becomes an intractable challenge to catch the nature of the process and build accurate soft sensor models. To solve this problem, this paper proposes a novel manifold learning based virtual sample generation method (Isomap-VSG) to generate feasible virtual samples in the information gaps for supplementing the original small sample space. To find data sparse regions reasonably, one kind of manifold learning methods called Isomap is used to visualize process data with high dimension. Then virtual samples can be generated by the interpolation method and extreme learning machine. The simulation results on a standard dataset and a real-world application demonstrate that, compared with other advanced methods, the proposed Isomap-VSG method can achieve better performance in terms of generating feasible virtual samples and improving the accuracy of soft sensor models using limited samples.

摘要

由于工业过程的机制极其复杂且具有很强的非线性特性,数据驱动的软传感器技术在过程工业的智能测量中起着关键作用。然而,稳态阶段采集的过程数据信息相当有限且不可靠,导致出现小样本问题。因此,要把握过程本质并建立准确的软传感器模型成为一项棘手的挑战。为解决这一问题,本文提出一种基于流形学习的新型虚拟样本生成方法(等距映射 - 虚拟样本生成法,Isomap - VSG),以便在信息间隙中生成可行的虚拟样本,从而补充原始的小样本空间。为合理找到数据稀疏区域,使用一种名为等距映射的流形学习方法对高维过程数据进行可视化。然后可通过插值方法和极限学习机生成虚拟样本。在一个标准数据集和实际应用上的仿真结果表明,与其他先进方法相比,所提出的等距映射 - 虚拟样本生成法在生成可行虚拟样本以及使用有限样本提高软传感器模型精度方面能够取得更好的性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验