Suppr超能文献

ISOMAP 诱导流形嵌入及其在阿尔茨海默病和轻度认知障碍中的应用。

ISOMAP induced manifold embedding and its application to Alzheimer's disease and mild cognitive impairment.

机构信息

Department of Biomedical Engineering, Gachon University, Republic of Korea.

出版信息

Neurosci Lett. 2012 Apr 4;513(2):141-5. doi: 10.1016/j.neulet.2012.02.016. Epub 2012 Feb 15.

Abstract

Neuroimaging data are high dimensional and thus cumbersome to analyze. Manifold learning is a technique to find a low dimensional representation for high dimensional data. With manifold learning, data analysis becomes more tractable in the low dimensional space. We propose a novel shape quantification method based on a manifold learning method, ISOMAP, for brain MRI. Existing work applied another manifold learning method, multidimensional scaling (MDS), to quantify shape information for distinguishing Alzheimer's disease (AD) from normal. We enhance the existing methodology by (1) applying it to distinguish mild cognitive impairment (MCI) from normal, (2) adopting a more advanced manifold learning technique, ISOMAP, and (3) showing the effectiveness of the induced low dimensional embedding space to predict key clinical variables such as mini mental state exam scores and clinical diagnosis using the standard multiple linear regression. Our methodology was tested using 25 normal, 25 AD, and 25 MCI patients.

摘要

神经影像学数据具有高维性,因此分析起来很麻烦。流形学习是一种为高维数据找到低维表示的技术。通过流形学习,数据分析在低维空间中变得更加可行。我们提出了一种基于流形学习方法 ISOMAP 的新型脑 MRI 形状量化方法。现有工作应用另一种流形学习方法多维尺度分析 (MDS) 来量化形状信息,以区分阿尔茨海默病 (AD) 与正常。我们通过以下方法增强了现有方法:(1) 应用于区分轻度认知障碍 (MCI) 与正常,(2) 采用更先进的流形学习技术 ISOMAP,以及 (3) 使用标准的多元线性回归显示诱导的低维嵌入空间对预测关键临床变量(如简易精神状态检查评分和临床诊断)的有效性。我们的方法使用了 25 名正常、25 名 AD 和 25 名 MCI 患者进行了测试。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验