Reintjes Moritz, Temple Blake
Fachbereich für Mathematik und Statistik, Universität Konstanz, Konstanz 78467, Germany.
Department of Mathematics, University of California, Davis, CA 95616, USA.
Proc Math Phys Eng Sci. 2020 Sep;476(2241):20200177. doi: 10.1098/rspa.2020.0177. Epub 2020 Sep 16.
We present the authors' new theory of the RT-equations ('regularity transformation' or 'Reintjes-Temple' equations), nonlinear elliptic partial differential equations which determine the coordinate transformations which smooth connections to optimal regularity, one derivative smoother than the Riemann curvature tensor Riem(). As one application we extend Uhlenbeck compactness from Riemannian to Lorentzian geometry; and as another application we establish that regularity singularities at general relativistic shock waves can always be removed by coordinate transformation. This is based on establishing a general multi-dimensional existence theory for the RT-equations by application of elliptic regularity theory in spaces. The theory and results announced in this paper apply to arbitrary connections on the tangent bundle of arbitrary manifolds , including Lorentzian manifolds of general relativity.
我们介绍了作者关于RT方程(“正则变换”或“Reintjes - Temple”方程)的新理论,这是一类非线性椭圆型偏微分方程,它确定能将联络平滑到最优正则性的坐标变换,其正则性比黎曼曲率张量Riem()高一个导数阶。作为一个应用,我们将乌伦贝克紧致性从黎曼几何扩展到洛伦兹几何;作为另一个应用,我们证明了广义相对论激波处的正则奇点总能通过坐标变换消除。这是基于在 空间中应用椭圆正则性理论建立了RT方程的一般多维存在性理论。本文所宣布的理论和结果适用于任意流形 的切丛上的任意 联络,包括广义相对论中的洛伦兹流形。