Suppr超能文献

理想气体相对论动力学的因果耗散

Causal dissipation for the relativistic dynamics of ideal gases.

作者信息

Freistühler Heinrich, Temple Blake

机构信息

Department of Mathematics, University of Konstanz, 78457 Konstanz, Germany.

Department of Mathematics, University of California, Davis, CA 95616, USA.

出版信息

Proc Math Phys Eng Sci. 2017 May;473(2201):20160729. doi: 10.1098/rspa.2016.0729. Epub 2017 May 24.

Abstract

We derive a general class of relativistic dissipation tensors by requiring that, combined with the relativistic Euler equations, they form a second-order system of partial differential equations which is symmetric hyperbolic in a second-order sense when written in the natural Godunov variables that make the Euler equations symmetric hyperbolic in the first-order sense. We show that this class contains a unique element representing a causal formulation of relativistic dissipative fluid dynamics which (i) is equivalent to the classical descriptions by Eckart and Landau to first order in the coefficients of viscosity and heat conduction and (ii) has its signal speeds bounded sharply by the speed of light. Based on these properties, we propose this system as a natural candidate for the relativistic counterpart of the classical Navier-Stokes equations.

摘要

通过要求相对论耗散张量与相对论欧拉方程相结合,能构成一个二阶偏微分方程组,当用使欧拉方程在一阶意义下为对称双曲型的自然戈东诺夫变量来书写时,该方程组在二阶意义下是对称双曲型的,我们推导出了一类广义相对论耗散张量。我们证明,这类张量包含一个唯一元素,它代表相对论耗散流体动力学的一种因果表述,该表述(i)在粘性系数和热传导系数的一阶近似下等同于埃卡特和朗道的经典描述,并且(ii)其信号速度被光速严格限制。基于这些性质,我们提出这个方程组作为经典纳维 - 斯托克斯方程相对论对应物的自然候选者。

相似文献

1
Causal dissipation for the relativistic dynamics of ideal gases.理想气体相对论动力学的因果耗散
Proc Math Phys Eng Sci. 2017 May;473(2201):20160729. doi: 10.1098/rspa.2016.0729. Epub 2017 May 24.
3
A new continuum model for general relativistic viscous heat-conducting media.一种用于广义相对论粘性热传导介质的新连续介质模型。
Philos Trans A Math Phys Eng Sci. 2020 May;378(2170):20190175. doi: 10.1098/rsta.2019.0175. Epub 2020 Mar 30.
6
Relativistic viscoelastic fluid mechanics.相对论性粘弹性流体力学
Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Aug;84(2 Pt 2):026316. doi: 10.1103/PhysRevE.84.026316. Epub 2011 Aug 15.
7
Eckart equations, Maxwellian iteration and relativistic causal theories of divergence type.埃卡特方程、麦克斯韦迭代和散度型相对论因果理论。
Philos Trans A Math Phys Eng Sci. 2023 Dec 25;381(2263):20220371. doi: 10.1098/rsta.2022.0371. Epub 2023 Nov 6.
10
Causality of the Einstein-Israel-Stewart Theory with Bulk Viscosity.
Phys Rev Lett. 2019 Jun 7;122(22):221602. doi: 10.1103/PhysRevLett.122.221602.

本文引用的文献

2
Systems of conservation equations with a convex extension.具有凸扩展的守恒方程组。
Proc Natl Acad Sci U S A. 1971 Aug;68(8):1686-8. doi: 10.1073/pnas.68.8.1686.
3
Dissipative relativistic fluid theories of divergence type.散度型耗散相对论流体理论
Phys Rev D Part Fields. 1990 Mar 15;41(6):1855-1861. doi: 10.1103/physrevd.41.1855.
4
Linear plane waves in dissipative relativistic fluids.耗散相对论流体中的线性平面波。
Phys Rev D Part Fields. 1987 Jun 15;35(12):3723-3732. doi: 10.1103/physrevd.35.3723.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验