Suppr超能文献

将肠道微生物群分析纳入肝硬化住院预测的成本效益

Cost-effectiveness of integrating gut microbiota analysis into hospitalisation prediction in cirrhosis.

作者信息

Bajaj Jasmohan S, Acharya Chathur, Sikaroodi Masoumeh, Gillevet Patrick M, Thacker Leroy R

机构信息

Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University and McGuire VA Medical Center, Richmond, Virginia.

Microbiome Analysis Center, George Mason University, Manassas, Virginia.

出版信息

GastroHep. 2020 Mar;2(2):79-86. doi: 10.1002/ygh2.390. Epub 2020 Feb 6.

Abstract

BACKGROUND

Admissions in cirrhosis are expensive and often unpredictable based on purely clinical variables. Admissions could be related to complications associated with gut microbial changes, which can improve prognostication. However, the cost-effectiveness is unclear.

AIMS

Determine cost-effectiveness of adding gut microbiota analysis to clinical parameters in prediction and subsequent reduction of admissions in cirrhosis.

METHODS

Using a Markov model of 1000 cirrhosis patients over 90 days, we modeled microbiota testing using 16srRNA ($250/sample), low-depth ($350/sample) and high-depth ($650/sample) metagenomics added to standard-of-care (SOC) for prevention of admissions using standard outcome costs and rates of development. We generated quality of life years (QALY) and Incremental cost-effectiveness ratios (ICER) for the base scenarios and performed sensitivity analyses by varying costs for outcomes (transplant, death, admission) and admission rates (40%, range 25%-60%).

RESULTS

Using fixed costs of outcomes and outcome rates, microbiota analysis was cost-saving ($47K-$97K) at $250 and $350/sample if admissions were reduced by 5%over SOC and >10% with $650/sample. When costs of LT, death and admissions were varied, these cost-savings remained robust provided there was >2.1% reduction (range 1.3%-3.2%) for $250/sample, >2.9% (range 1.8%-4.4%) for $350/sample and >5.4% (range 3.3%-8.2%) for $650/sample. These cost-savings remained robust even when the assumed admission rate was varied for all sample cost values.

CONCLUSIONS

Gut microbiota analysis is cost-effective for predicting and potentially preventing 90-day admissions in cirrhosis over current standard of care. This cost-saving remained robust even after sensitivity analyses that varied the background admission rates.

摘要

背景

肝硬化患者的住院治疗费用高昂,且仅基于临床变量往往难以预测。住院可能与肠道微生物变化相关的并发症有关,这有助于改善预后。然而,其成本效益尚不清楚。

目的

确定在肝硬化患者的预测及后续住院率降低中,将肠道微生物群分析添加到临床参数中的成本效益。

方法

使用一个针对1000名肝硬化患者、为期90天的马尔可夫模型,我们对微生物群检测进行建模,将使用16srRNA(250美元/样本)、低深度(350美元/样本)和高深度(650美元/样本)宏基因组学添加到标准治疗(SOC)中,以使用标准结局成本和发展率预防住院。我们为基础情景生成了生活质量年(QALY)和增量成本效益比(ICER),并通过改变结局(移植、死亡、住院)成本和住院率(40%,范围25%-60%)进行敏感性分析。

结果

使用固定的结局成本和结局率,如果与标准治疗相比住院率降低5%,250美元和350美元/样本的微生物群分析可节省成本(4.7万美元-9.7万美元),650美元/样本时降低超过10%。当肝移植、死亡和住院成本变化时,只要250美元/样本降低>2.1%(范围1.3%-3.2%)、350美元/样本降低>2.9%(范围1.8%-4.4%)、650美元/样本降低>5.4%(范围3.3%-8.2%),这些成本节省仍然显著。即使对所有样本成本值改变假定的住院率,这些成本节省仍然显著。

结论

与当前标准治疗相比,肠道微生物群分析对于预测并潜在预防肝硬化患者90天内的住院具有成本效益。即使在对背景住院率进行变化的敏感性分析之后,这种成本节省仍然显著。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b4b0/7567123/8e04f8676680/nihms-1558850-f0001.jpg

相似文献

3
10

引用本文的文献

本文引用的文献

1
Gut Microbiota as Biosensors in Patients With Cirrhosis.肠道微生物群作为肝硬化患者的生物传感器
Cell Mol Gastroenterol Hepatol. 2019;8(2):231-233. doi: 10.1016/j.jcmgh.2019.04.016. Epub 2019 May 24.
6
Is treating the gut microbiome the key to achieving better outcomes in cirrhosis?治疗肠道微生物群是改善肝硬化治疗效果的关键吗?
Expert Rev Gastroenterol Hepatol. 2019 Jan;13(1):1-2. doi: 10.1080/17474124.2019.1543587. Epub 2018 Nov 13.
10
Altered Microbiome in Patients With Cirrhosis and Complications.肝硬化及并发症患者的肠道微生物组改变。
Clin Gastroenterol Hepatol. 2019 Jan;17(2):307-321. doi: 10.1016/j.cgh.2018.08.008. Epub 2018 Aug 9.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验