文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于整合人工智能的方法将多组学联系起来,以微生物组-代谢组相互作用结果作为精准医学的依据。

Integrative AI-Based Approaches to Connect the Multiome to Use Microbiome-Metabolome Interactive Outcome as Precision Medicine.

作者信息

Mukhopadhyay Sohini, Ulaganathan Nivedhitha, Dumpuri Prashanth, Aich Palok

机构信息

School of Biological Sciences, National Institute of Science Education and Research (NISER), Khurdha, Odisha, India.

Homi Bhabha National Institute, Training School Complex, Mumbai, India.

出版信息

Methods Mol Biol. 2025;2952:15-37. doi: 10.1007/978-1-0716-4690-8_2.


DOI:10.1007/978-1-0716-4690-8_2
PMID:40553325
Abstract

In the era of Genome-Wide Association Studies (GWAS), biologists have unprecedented access to vast datasets, mirrored in the wealth of information from various omics studies, including genomics, transcriptomics, proteomics, metabolomics, and metagenomics. Integrating diverse data sources has emerged as crucial in unravelling the intricacies of biological processes. This chapter delves into our method for merging various omics methodologies, emphasizing metabolomics and metagenomics data. A powerful strategy addresses data processing challenges and opens new avenues for personalized microbiome-based interventions. The combined analysis of host and microbial metabolomics and metagenomics data has significantly advanced our understanding in diagnosing and treating conditions such as inflammatory bowel disease and irritable bowel syndrome. Metabolic signatures in biological fluids and their microbial counterparts serve as indicators, differentiating health from disease. The sheer volume of data demands sophisticated automated tools for processing and interpretation. Recognizing this need, integrating artificial intelligence (AI) and data science has become increasingly prominent. In this chapter, we combine microbiome and metabolome analyses through publicly available models to elucidate the correlations between microbial and metabolic profiles. By harnessing AI models across various omics data sources, this chapter bridges the gap between data acquisition and clinical applications, paving the way for personalized interventions and optimizing individual health.

摘要

在全基因组关联研究(GWAS)时代,生物学家能够以前所未有的方式获取海量数据集,这反映在来自各种组学研究的丰富信息中,包括基因组学、转录组学、蛋白质组学、代谢组学和宏基因组学。整合不同的数据来源已成为揭示生物过程复杂性的关键。本章深入探讨我们合并各种组学方法的方法,重点是代谢组学和宏基因组学数据。一种强大的策略解决了数据处理挑战,并为基于个性化微生物群的干预开辟了新途径。宿主和微生物代谢组学与宏基因组学数据的联合分析在诊断和治疗炎症性肠病和肠易激综合征等疾病方面显著推进了我们的认识。生物体液中的代谢特征及其微生物对应物可作为区分健康与疾病的指标。如此庞大的数据量需要复杂的自动化工具进行处理和解读。认识到这一需求,整合人工智能(AI)和数据科学变得越来越重要。在本章中,我们通过公开可用的模型结合微生物组和代谢组分析,以阐明微生物和代谢谱之间的相关性。通过利用跨各种组学数据源的AI模型,本章弥合了数据获取与临床应用之间的差距,为个性化干预和优化个体健康铺平了道路。

相似文献

[1]
Integrative AI-Based Approaches to Connect the Multiome to Use Microbiome-Metabolome Interactive Outcome as Precision Medicine.

Methods Mol Biol. 2025

[2]
The Use of AI for Phenotype-Genotype Mapping.

Methods Mol Biol. 2025

[3]
AI-Driven Antimicrobial Peptide Discovery: Mining and Generation.

Acc Chem Res. 2025-6-17

[4]
Advancements in AI for Computational Biology and Bioinformatics: A Comprehensive Review.

Methods Mol Biol. 2025

[5]
Integrating Gut Microbiome and Metabolomics with Magnetic Resonance Enterography to Advance Bowel Damage Prediction in Crohn's Disease.

J Inflamm Res. 2025-6-11

[6]
Multi-omics approaches: transforming the landscape of natural product isolation.

Funct Integr Genomics. 2025-6-19

[7]
Systematic analyses uncover robust salivary microbial signatures and host-microbiome perturbations in oral squamous cell carcinoma.

mSystems. 2025-2-18

[8]
Harnessing the Power of AI in Cell and Genetic Engineering.

Methods Mol Biol. 2025

[9]
Metabolome-driven microbiome assembly determining the health of ginger crop (Zingiber officinale L. Roscoe) against rhizome rot.

Microbiome. 2024-9-7

[10]
Synbiotics, prebiotics and probiotics for solid organ transplant recipients.

Cochrane Database Syst Rev. 2022-9-20

本文引用的文献

[1]
Multi-omics approaches to studying gastrointestinal microbiome in the context of precision medicine and machine learning.

Front Mol Biosci. 2024-1-19

[2]
Insight into gut dysbiosis of patients with inflammatory bowel disease and ischemic colitis.

Front Microbiol. 2023-5-11

[3]
Missing data in multi-omics integration: Recent advances through artificial intelligence.

Front Artif Intell. 2023-2-9

[4]
Composition of the gut microbiota in patients with inflammatory bowel disease in Saudi Arabia: A pilot study.

Saudi J Gastroenterol. 2023

[5]
The role of in inflammatory bowel disease: Current knowledge and perspectives.

Front Immunol. 2022

[6]
A guide to multi-omics data collection and integration for translational medicine.

Comput Struct Biotechnol J. 2022-12-1

[7]
Interactions between Medications and the Gut Microbiome in Inflammatory Bowel Disease.

Microorganisms. 2022-10-4

[8]
The gut microbiome-metabolome dataset collection: a curated resource for integrative meta-analysis.

NPJ Biofilms Microbiomes. 2022-10-15

[9]
Composition and diverse differences of intestinal microbiota in ulcerative colitis patients.

Front Cell Infect Microbiol. 2022

[10]
Multi-omics strategies for personalized and predictive medicine: past, current, and future translational opportunities.

Emerg Top Life Sci. 2022-4-15

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索