Mukhopadhyay Sohini, Ulaganathan Nivedhitha, Dumpuri Prashanth, Aich Palok
School of Biological Sciences, National Institute of Science Education and Research (NISER), Khurdha, Odisha, India.
Homi Bhabha National Institute, Training School Complex, Mumbai, India.
Methods Mol Biol. 2025;2952:15-37. doi: 10.1007/978-1-0716-4690-8_2.
In the era of Genome-Wide Association Studies (GWAS), biologists have unprecedented access to vast datasets, mirrored in the wealth of information from various omics studies, including genomics, transcriptomics, proteomics, metabolomics, and metagenomics. Integrating diverse data sources has emerged as crucial in unravelling the intricacies of biological processes. This chapter delves into our method for merging various omics methodologies, emphasizing metabolomics and metagenomics data. A powerful strategy addresses data processing challenges and opens new avenues for personalized microbiome-based interventions. The combined analysis of host and microbial metabolomics and metagenomics data has significantly advanced our understanding in diagnosing and treating conditions such as inflammatory bowel disease and irritable bowel syndrome. Metabolic signatures in biological fluids and their microbial counterparts serve as indicators, differentiating health from disease. The sheer volume of data demands sophisticated automated tools for processing and interpretation. Recognizing this need, integrating artificial intelligence (AI) and data science has become increasingly prominent. In this chapter, we combine microbiome and metabolome analyses through publicly available models to elucidate the correlations between microbial and metabolic profiles. By harnessing AI models across various omics data sources, this chapter bridges the gap between data acquisition and clinical applications, paving the way for personalized interventions and optimizing individual health.
在全基因组关联研究(GWAS)时代,生物学家能够以前所未有的方式获取海量数据集,这反映在来自各种组学研究的丰富信息中,包括基因组学、转录组学、蛋白质组学、代谢组学和宏基因组学。整合不同的数据来源已成为揭示生物过程复杂性的关键。本章深入探讨我们合并各种组学方法的方法,重点是代谢组学和宏基因组学数据。一种强大的策略解决了数据处理挑战,并为基于个性化微生物群的干预开辟了新途径。宿主和微生物代谢组学与宏基因组学数据的联合分析在诊断和治疗炎症性肠病和肠易激综合征等疾病方面显著推进了我们的认识。生物体液中的代谢特征及其微生物对应物可作为区分健康与疾病的指标。如此庞大的数据量需要复杂的自动化工具进行处理和解读。认识到这一需求,整合人工智能(AI)和数据科学变得越来越重要。在本章中,我们通过公开可用的模型结合微生物组和代谢组分析,以阐明微生物和代谢谱之间的相关性。通过利用跨各种组学数据源的AI模型,本章弥合了数据获取与临床应用之间的差距,为个性化干预和优化个体健康铺平了道路。
Methods Mol Biol. 2025
Acc Chem Res. 2025-6-17
Methods Mol Biol. 2025
Funct Integr Genomics. 2025-6-19
Methods Mol Biol. 2025
Cochrane Database Syst Rev. 2022-9-20
Front Microbiol. 2023-5-11
Front Artif Intell. 2023-2-9
Comput Struct Biotechnol J. 2022-12-1
Microorganisms. 2022-10-4
NPJ Biofilms Microbiomes. 2022-10-15
Front Cell Infect Microbiol. 2022