Suppr超能文献

宫颈细胞的高分辨率分析——进展报告。

High resolution analysis of cervical cells--a progress report.

作者信息

Poulsen R S, Oliver L H, Cahn R L, Louis C, Toussaint G

出版信息

J Histochem Cytochem. 1977 Jul;25(7):689-95. doi: 10.1177/25.7.330722.

Abstract

This paper presents preliminary results of research toward the development of a high resolution analysis stage for a dual resolution image processing-based prescreening device for cervical cytology. Experiments using both manual and automatic methods for cell segmentation are described. In both cases, 1500 cervical cells were analyzed and classified as normal or abnormal (dysplastic or malignant) using a minimum Mahalanobis distance classifier with eight subclasses of normal cells, and five subclasses of abnormal cells. With manual segmentation, false positive and false negative error rates of 2.98 and 7.73% were obtained. Similar experiments using automatic cell segmentation methods yielded false positive and false negative error rates of 3.90 and 11.56%, respectively. In both cases, independent training and testing data were used.

摘要

本文展示了关于基于双分辨率图像处理的宫颈细胞学预筛查设备高分辨率分析阶段研发的初步研究成果。描述了使用手动和自动方法进行细胞分割的实验。在这两种情况下,均使用具有八个正常细胞亚类和五个异常细胞亚类的最小马氏距离分类器对1500个宫颈细胞进行分析,并将其分类为正常或异常(发育异常或恶性)。采用手动分割时,假阳性和假阴性错误率分别为2.98%和7.73%。使用自动细胞分割方法进行的类似实验得出的假阳性和假阴性错误率分别为3.90%和11.56%。在这两种情况下,均使用了独立的训练和测试数据。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验