Suppr超能文献

Optimizing cervical cell classifiers.

作者信息

Castleman K R, White B S

出版信息

Anal Quant Cytol. 1980 Jun;2(2):117-22.

PMID:7447183
Abstract

In an automated prescreening system where a cell classifier and a specimen classifier operate in cascade, the false-positive and false-negative error rates of each classifier can be traded off to obtain the best overall performance. It is usually desirable to keep the specimen false-negative rate below the false-positive rate. An analysis of the classifier cascade shows that, in contrast, the cell classifier should have its false-positive rate much lower than its false-negative rate. A procedure is presented for selecting the best operating point on the ROC curve of the cell classifier. This minimizes the sample size required to achieve prescribed specimen error rates.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验