Castleman K R, White B S
Anal Quant Cytol. 1980 Jun;2(2):117-22.
In an automated prescreening system where a cell classifier and a specimen classifier operate in cascade, the false-positive and false-negative error rates of each classifier can be traded off to obtain the best overall performance. It is usually desirable to keep the specimen false-negative rate below the false-positive rate. An analysis of the classifier cascade shows that, in contrast, the cell classifier should have its false-positive rate much lower than its false-negative rate. A procedure is presented for selecting the best operating point on the ROC curve of the cell classifier. This minimizes the sample size required to achieve prescribed specimen error rates.
在细胞分类器和样本分类器级联运行的自动预筛选系统中,可以权衡每个分类器的假阳性和假阴性错误率,以获得最佳的整体性能。通常希望将样本假阴性率保持在假阳性率以下。相比之下,对分类器级联的分析表明,细胞分类器的假阳性率应远低于其假阴性率。本文提出了一种在细胞分类器的ROC曲线上选择最佳工作点的方法。这将使达到规定样本错误率所需的样本量最小化。