Suppr超能文献

巨杉的遗传与气候变异性关联揭示了沿水分相关梯度的局部适应性特征。

Association of genetic and climatic variability in giant sequoia, , reveals signatures of local adaptation along moisture-related gradients.

作者信息

DeSilva Rainbow, Dodd Richard S

机构信息

Department of Environmental Science, Policy, and Management University of California at Berkeley Berkeley California USA.

出版信息

Ecol Evol. 2020 Sep 1;10(19):10619-10632. doi: 10.1002/ece3.6716. eCollection 2020 Oct.

Abstract

Uncovering the genetic basis of local adaptation is a major goal of evolutionary biology and conservation science alike. In an era of climate change, an understanding of how environmental factors shape adaptive diversity is crucial to predicting species response and directing management. Here, we investigate patterns of genomic variation in giant sequoia, an iconic and ecologically important tree species, using 1,364 bi-allelic single nucleotide polymorphisms (SNPs). We use an outlier test and two genotype-environment association methods, latent factor mixed models (LFMMs) and redundancy analysis (RDA), to detect complex signatures of local adaptation. Results indicate 79 genomic regions of potential adaptive importance, with limited overlap between the detection methods. Of the 58 loci detected by LFMM, 51 showed strong correlations to a precipitation-driven composite variable and seven to a temperature-related variable. RDA revealed 24 outlier loci with association to climate variables, all of which showed strongest relationship to summer precipitation. Nine candidate loci were indicated by two methods. After correcting for geographic distance, RDA models using climate predictors accounted for 49% of the explained variance and showed significant correlations between SNPs and climatic factors. Here, we present evidence of local adaptation in giant sequoia along gradients of precipitation and provide a first step toward identifying genomic regions of adaptive significance. The results of this study will provide information to guide management strategies that seek to maximize adaptive potential in the face of climate change.

摘要

揭示局部适应性的遗传基础是进化生物学和保护科学的主要目标。在气候变化的时代,了解环境因素如何塑造适应性多样性对于预测物种反应和指导管理至关重要。在这里,我们使用1364个双等位基因单核苷酸多态性(SNP)研究了巨杉(一种标志性且具有重要生态意义的树种)的基因组变异模式。我们使用离群值检验和两种基因型-环境关联方法,即潜在因子混合模型(LFMM)和冗余分析(RDA),来检测局部适应性的复杂特征。结果表明有79个具有潜在适应性重要性的基因组区域,检测方法之间的重叠有限。在LFMM检测到的58个位点中,51个与降水驱动的复合变量有强相关性,7个与温度相关变量有强相关性。RDA揭示了24个与气候变量相关的离群位点,所有这些位点与夏季降水的关系最强。两种方法都指出了9个候选位点。在校正地理距离后,使用气候预测因子的RDA模型解释了49%的变异,并显示出SNP与气候因子之间的显著相关性。在这里,我们提供了巨杉沿降水梯度局部适应性的证据,并朝着识别具有适应性重要性的基因组区域迈出了第一步。这项研究的结果将为指导管理策略提供信息,这些策略旨在面对气候变化时最大化适应性潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/150b/7548164/d33e232e83f2/ECE3-10-10619-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验