Lam Anh K, Moen Erika L, Pusavat Jennifer, Wouters Cassandra L, Panlilio Hannah, Ferrell Maya J, Houck Matthew B, Glatzhofer Daniel T, Rice Charles V
Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States.
ACS Omega. 2020 Sep 29;5(40):26262-26270. doi: 10.1021/acsomega.0c04111. eCollection 2020 Oct 13.
Bacterial biofilms, often impenetrable to antibiotic medications, are a leading cause of poor wound healing. The prognosis is worse for wounds with biofilms of antimicrobial-resistant (AMR) bacteria, such as methicillin-resistant (MRSA), methicillin-resistant (MRSE), and multi-drug resistant (MDR-PA). Resistance hinders initial treatment of standard-of-care antibiotics. The persistence of MRSA, MRSE, and/or MDR-PA often allows acute infections to become chronic wound infections. The water-soluble hydrophilic properties of low-molecular-weight (600 Da) branched polyethylenimine (600 Da BPEI) enable easy drug delivery to directly attack AMR and biofilms in the wound environment as a topical agent for wound treatment. To mitigate toxicity issues, we have modified 600 Da BPEI with polyethylene glycol (PEG) in a straightforward one-step reaction. The PEG-BPEI molecules disable β-lactam resistance in MRSA, MRSE, and MDR-PA while also having the ability to dissolve established biofilms. PEG-BPEI accomplishes these tasks independently, resulting in a multifunction potentiation agent. We envision wound treatment with antibiotics given topically, orally, or intravenously in which external application of PEG-BPEIs disables biofilms and resistance mechanisms. In the absence of a robust pipeline of new drugs, existing drugs and regimens must be re-evaluated as combination(s) with potentiators. The PEGylation of 600 Da BPEI provides new opportunities to meet this goal with a single compound whose multifunction properties are retained while lowering acute toxicity.
细菌生物膜通常对抗生素药物具有抗性,是伤口愈合不良的主要原因。对于存在抗微生物耐药(AMR)细菌生物膜的伤口,如耐甲氧西林金黄色葡萄球菌(MRSA)、耐甲氧西林表皮葡萄球菌(MRSE)和多重耐药铜绿假单胞菌(MDR-PA),预后更差。耐药性阻碍了标准护理抗生素的初始治疗。MRSA、MRSE和/或MDR-PA的持续存在常常使急性感染转变为慢性伤口感染。低分子量(600 Da)支链聚乙烯亚胺(600 Da BPEI)的水溶性亲水性特性使其易于给药,可作为伤口治疗的局部用药直接攻击伤口环境中的AMR和生物膜。为了减轻毒性问题,我们通过一步简单反应,用聚乙二醇(PEG)对600 Da BPEI进行了修饰。PEG-BPEI分子可消除MRSA、MRSE和MDR-PA中的β-内酰胺耐药性,同时还具有溶解已形成生物膜的能力。PEG-BPEI独立完成这些任务,从而成为一种多功能增效剂。我们设想通过局部、口服或静脉注射抗生素进行伤口治疗,其中外用PEG-BPEI可消除生物膜和耐药机制。在缺乏强大新药研发渠道的情况下,现有药物和治疗方案必须作为与增效剂的联合用药重新进行评估。600 Da BPEI的聚乙二醇化提供了新的机会,以单一化合物实现这一目标,该化合物保留了多功能特性,同时降低了急性毒性。