Heydarian Neda, Ferrell Maya, Nair Ayesha S, Roedl Chase, Peng Zongkai, Nguyen Tra D, Best William, Wozniak Karen L, Rice Charles V
Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States.
Department of Microbiology and Molecular Genetics, Oklahoma State University, 307 Life Sciences East, Stillwater, Oklahoma 74078, United States.
ACS Omega. 2024 Feb 23;9(9):10967-10978. doi: 10.1021/acsomega.4c00043. eCollection 2024 Mar 5.
Innate immunity has considerable specificity and can discriminate between individual species of microbes. In this regard, pathogens are "seen" as dangerous to the host and elicit an inflammatory response capable of destroying the microbes. This immune discrimination is achieved by toll-like receptors on host cells recognizing pathogens, such as , and microbe-specific pathogen-associated molecular pattern (PAMP) molecules, such as lipoteichoic acid (LTA). PAMPs impede wound healing by lengthening the inflammatory phase of healing and contributing to the development of chronic wounds. Preventing PAMPs from triggering the release of inflammatory cytokines will counteract the dysregulation of inflammation. Here, we use ELISA to evaluate the use of cationic molecules branched polyethylenimine (BPEI), PEGylated BPEI (PEG-BPEI), and polymyxin-B to neutralize anionic LTA and lower levels of TNF-α cytokine release from human THP-1 monocytes in a concentration-dependent manner. Additional data collected with qPCR shows that BPEI and PEG-BPEI reduce the expression profile of the TNF-α gene. Similar effects are observed for the neutralization of whole-cell bacteria. In vitro cytotoxicity data demonstrate that PEGylation lowers the toxicity of PEG-BPEI (IC = 2661 μm) compared to BPEI (IC = 853 μM) and that both compounds are orders of magnitude less toxic than the cationic antibiotic polymyxin-B (IC = 79 μM). Additionally, the LTA neutralization ability of polymyxin-B is less effective than BPEI or PEG-BPEI. These properties of BPEI and PEG-BPEI expand their utility beyond disabling antibiotic resistance mechanisms and disrupting biofilms, providing additional justification for developing these agents as wound healing therapeutics. The multiple mechanisms of action for BPEI and PEG-BPEI are superior to current wound treatment strategies that have a single modality.
固有免疫具有相当的特异性,能够区分不同种类的微生物。在这方面,病原体被“视为”对宿主有危险,并引发能够破坏微生物的炎症反应。这种免疫识别是通过宿主细胞上的Toll样受体识别病原体(如 )以及微生物特异性病原体相关分子模式(PAMP)分子(如脂磷壁酸(LTA))来实现的。PAMP通过延长愈合的炎症期并促进慢性伤口的形成来阻碍伤口愈合。防止PAMP触发炎症细胞因子的释放将抵消炎症的失调。在此,我们使用酶联免疫吸附测定(ELISA)来评估阳离子分子支链聚乙烯亚胺(BPEI)、聚乙二醇化BPEI(PEG-BPEI)和多粘菌素B以浓度依赖性方式中和阴离子LTA并降低人THP-1单核细胞中肿瘤坏死因子-α(TNF-α)细胞因子释放水平的作用。通过定量聚合酶链反应(qPCR)收集的其他数据表明,BPEI和PEG-BPEI降低了TNF-α基因的表达谱。在中和全细胞 细菌方面也观察到了类似的效果。体外细胞毒性数据表明,与BPEI(半数抑制浓度(IC)=853μM)相比,聚乙二醇化降低了PEG-BPEI的毒性(IC =2661μM),并且这两种化合物的毒性比阳离子抗生素多粘菌素B(IC =79μM)低几个数量级。此外,多粘菌素B的LTA中和能力不如BPEI或PEG-BPEI有效。BPEI和PEG-BPEI的这些特性扩展了它们的用途,超出了消除抗生素耐药机制和破坏生物膜的范围,为将这些药物开发为伤口愈合治疗剂提供了额外的依据。BPEI和PEG-BPEI的多种作用机制优于目前具有单一模式的伤口治疗策略。