Suppr超能文献

一种用于研究骨细胞生物力学的 3D、动态加载的骨软骨单位水凝胶模型。

A 3D, Dynamically Loaded Hydrogel Model of the Osteochondral Unit to Study Osteocyte Mechanobiology.

机构信息

Department of Mechanical Engineering, University of Colorado Boulder, 1111 Engineering Drive, Boulder, CO, 80309-0427, USA.

BioFrontiers Institute, University of Colorado Boulder, 3415 Colorado Ave, Boulder, CO, 80309-0596, USA.

出版信息

Adv Healthc Mater. 2020 Nov;9(22):e2001226. doi: 10.1002/adhm.202001226. Epub 2020 Oct 19.

Abstract

Osteocytes are mechanosensitive cells that orchestrate signaling in bone and cartilage across the osteochondral unit. The mechanisms by which osteocytes regulate osteochondral homeostasis and degeneration in response to mechanical cues remain unclear. This study introduces a novel 3D hydrogel bilayer composite designed to support osteocyte differentiation and bone matrix deposition in a bone-like layer and to recapitulate key aspects of the osteochondral unit's complex loading environment. The bilayer hydrogel is fabricated with a soft cartilage-like layer overlaying a stiff bone-like layer. The bone-like layer contains a stiff 3D-printed hydrogel structure infilled with a soft, degradable, cellular hydrogel. The IDG-SW3 cells embedded within the soft hydrogel mature into osteocytes and produce a mineralized collagen matrix. Under dynamic compressive strains, near-physiological levels of strain are achieved in the bone layer (≤ 0.08%), while the cartilage layer bears the majority of the strains (>99%). Under loading, the model induces an osteocyte response, measured by prostaglandin E2, that is frequency, but not strain, dependent: a finding attributed to altered fluid flow within the composite. Overall, this new hydrogel platform provides a novel approach to study osteocyte mechanobiology in vitro in an osteochondral tissue-mimetic environment.

摘要

成骨细胞是机械敏感细胞,可在整个骨软骨单元中协调骨骼和软骨的信号传递。成骨细胞调节骨软骨稳态和对机械刺激的退化的机制仍不清楚。本研究介绍了一种新型的 3D 水凝胶双层复合材料,旨在支持骨样层中成骨细胞的分化和骨基质的沉积,并再现骨软骨单元复杂加载环境的关键方面。双层水凝胶由柔软的软骨样层覆盖坚硬的骨样层制成。骨样层包含一个坚硬的 3D 打印水凝胶结构,内部填充有柔软的、可降解的细胞水凝胶。嵌入在软水凝胶中的 IDG-SW3 细胞成熟为成骨细胞,并产生矿化的胶原基质。在动态压缩应变下,骨层(≤0.08%)达到接近生理水平的应变,而软骨层承受大部分应变(>99%)。在加载下,该模型通过前列腺素 E2 测量诱导成骨细胞反应,该反应与应变有关,但与频率无关:这一发现归因于复合材料内的流体流动改变。总的来说,这种新的水凝胶平台为在骨软骨组织模拟环境中体外研究成骨细胞机械生物学提供了一种新方法。

相似文献

1
A 3D, Dynamically Loaded Hydrogel Model of the Osteochondral Unit to Study Osteocyte Mechanobiology.
Adv Healthc Mater. 2020 Nov;9(22):e2001226. doi: 10.1002/adhm.202001226. Epub 2020 Oct 19.
2
A 3D bioreactor model to study osteocyte differentiation and mechanobiology under perfusion and compressive mechanical loading.
Acta Biomater. 2024 Aug;184:210-225. doi: 10.1016/j.actbio.2024.06.041. Epub 2024 Jul 4.
3
IDG-SW3 Osteocyte Differentiation and Bone Extracellular Matrix Deposition Are Enhanced in a 3D Matrix Metalloproteinase-Sensitive Hydrogel.
ACS Appl Bio Mater. 2020 Mar 16;3(3):1666-1680. doi: 10.1021/acsabm.9b01227. Epub 2020 Feb 19.
4
Mechanical loading regulates human MSC differentiation in a multi-layer hydrogel for osteochondral tissue engineering.
Acta Biomater. 2015 Jul;21:142-53. doi: 10.1016/j.actbio.2015.04.015. Epub 2015 Apr 18.
5
The effects of dynamic compressive loading on human mesenchymal stem cell osteogenesis in the stiff layer of a bilayer hydrogel.
J Tissue Eng Regen Med. 2019 Jun;13(6):946-959. doi: 10.1002/term.2827. Epub 2019 May 7.
6
The effects of prostaglandin E2 on gene expression of IDG-SW3-derived osteocytes in 2D and 3D culture.
Biochem Biophys Res Commun. 2022 Nov 19;630:8-15. doi: 10.1016/j.bbrc.2022.09.013. Epub 2022 Sep 9.
8
Controlled Mechanical Property Gradients Within a Digital Light Processing Printed Hydrogel-Composite Osteochondral Scaffold.
Ann Biomed Eng. 2024 Aug;52(8):2162-2177. doi: 10.1007/s10439-024-03516-x. Epub 2024 Apr 29.
9
High-Strength, Biomimetic Functional Chitosan-Based Hydrogels for Full-Thickness Osteochondral Defect Repair.
ACS Biomater Sci Eng. 2022 Oct 10;8(10):4449-4461. doi: 10.1021/acsbiomaterials.2c00187. Epub 2022 Sep 7.
10
Mussel-Inspired Tough Hydrogel with In Situ Nanohydroxyapatite Mineralization for Osteochondral Defect Repair.
Adv Healthc Mater. 2019 Nov;8(22):e1901103. doi: 10.1002/adhm.201901103. Epub 2019 Oct 14.

引用本文的文献

1
β-glycerophosphate, not low magnitude fluid shear stress, increases osteocytogenesis in the osteoblast-to-osteocyte cell line IDG-SW3.
Connect Tissue Res. 2024 Jul;65(4):313-329. doi: 10.1080/03008207.2024.2375065. Epub 2024 Jul 10.
2
Controlled Mechanical Property Gradients Within a Digital Light Processing Printed Hydrogel-Composite Osteochondral Scaffold.
Ann Biomed Eng. 2024 Aug;52(8):2162-2177. doi: 10.1007/s10439-024-03516-x. Epub 2024 Apr 29.
3
Interfacial Tissue Regeneration with Bone.
Curr Osteoporos Rep. 2024 Apr;22(2):290-298. doi: 10.1007/s11914-024-00859-1. Epub 2024 Feb 15.
5
Bone-homing metastatic breast cancer cells impair osteocytes' mechanoresponse in a 3D loading model.
Heliyon. 2023 Sep 21;9(10):e20248. doi: 10.1016/j.heliyon.2023.e20248. eCollection 2023 Oct.
6
The potential role of mechanotransduction in the management of pediatric calvarial bone flap repair.
Biotechnol Bioeng. 2024 Jan;121(1):39-52. doi: 10.1002/bit.28534. Epub 2023 Sep 5.
7
Hydrogels and Bioprinting in Bone Tissue Engineering: Creating Artificial Stem-Cell Niches for In Vitro Models.
Adv Mater. 2023 Dec;35(52):e2301670. doi: 10.1002/adma.202301670. Epub 2023 Nov 2.
8
Modeling early changes associated with cartilage trauma using human-cell-laden hydrogel cartilage models.
Stem Cell Res Ther. 2022 Aug 4;13(1):400. doi: 10.1186/s13287-022-03022-8.

本文引用的文献

1
Biomimetic Bacterial Cellulose-Enhanced Double-Network Hydrogel with Excellent Mechanical Properties Applied for the Osteochondral Defect Repair.
ACS Biomater Sci Eng. 2018 Oct 8;4(10):3534-3544. doi: 10.1021/acsbiomaterials.8b00682. Epub 2018 Sep 21.
2
IDG-SW3 Osteocyte Differentiation and Bone Extracellular Matrix Deposition Are Enhanced in a 3D Matrix Metalloproteinase-Sensitive Hydrogel.
ACS Appl Bio Mater. 2020 Mar 16;3(3):1666-1680. doi: 10.1021/acsabm.9b01227. Epub 2020 Feb 19.
3
A viscoelastic PEGylated poly(glycerol sebacate)-based bilayer scaffold for cartilage regeneration in full-thickness osteochondral defect.
Biomaterials. 2020 Sep;253:120095. doi: 10.1016/j.biomaterials.2020.120095. Epub 2020 May 6.
5
6
Osteocyte dysfunction promotes osteoarthritis through MMP13-dependent suppression of subchondral bone homeostasis.
Bone Res. 2019 Nov 5;7:34. doi: 10.1038/s41413-019-0070-y. eCollection 2019.
7
Mussel-Inspired Tough Hydrogel with In Situ Nanohydroxyapatite Mineralization for Osteochondral Defect Repair.
Adv Healthc Mater. 2019 Nov;8(22):e1901103. doi: 10.1002/adhm.201901103. Epub 2019 Oct 14.
8
Studies on Osteocytes in Their 3D Native Matrix Versus 2D In Vitro Models.
Curr Osteoporos Rep. 2019 Aug;17(4):207-216. doi: 10.1007/s11914-019-00521-1.
9
The effects of dynamic compressive loading on human mesenchymal stem cell osteogenesis in the stiff layer of a bilayer hydrogel.
J Tissue Eng Regen Med. 2019 Jun;13(6):946-959. doi: 10.1002/term.2827. Epub 2019 May 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验