Fang Ju, Liao Junchen, Zhong Chuanxin, Lu Xiong, Ren Fuzeng
Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.
Key Lab of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China.
ACS Biomater Sci Eng. 2022 Oct 10;8(10):4449-4461. doi: 10.1021/acsbiomaterials.2c00187. Epub 2022 Sep 7.
Fabrication of a hydrogel scaffold for full-thickness osteochondral defect repair remains a grand challenge. Developing layered and multiphasic hydrogels to mimic the intrinsic hierarchical structure of the osteochondral unit is a promising strategy. Chitosan-based hydrogels are widely applied for biomedical applications. However, insufficient mechanical strength and lack of biological cues to restore damaged cartilage and subchondral tissue significantly hinder their application in osteochondral tissue engineering. In this study, a strong and tough, osteochondral-mimicking functional chitosan-based hydrogel (bilayer-gel) with an mineralized, osteoconductive lower layer and a basic fibroblast growth factor (bFGF)-incorporated, chondrogenic inducing upper layer was developed. The obtained bilayer-gel showed a depth-dependent gradient pore structure and composition. The strong double crosslinked hydrogel network and the homogeneous deposition of hydroxyapatite nanoparticles (HAp) at the lower layer provided a compressive strength of up to 2.5 MPa and a compressive strain of up to 40%. study showed that the bilayer-gel facilitates both chondrogenic differentiation in the upper layer and osteogenic differentiation in the lower layer. implantation revealed that the bilayer-gel could simultaneously promote hyaline cartilage and subchondral bone formation, thus resulting in an improved osteochondral reconstruction outcome. The present bilayer-gel thus shows great potential for full-thickness osteochondral defect repair.
制备用于全层骨软骨缺损修复的水凝胶支架仍然是一项巨大挑战。开发分层和多相水凝胶以模拟骨软骨单元的内在层次结构是一种有前景的策略。基于壳聚糖的水凝胶被广泛应用于生物医学领域。然而,机械强度不足以及缺乏恢复受损软骨和软骨下组织的生物信号,严重阻碍了它们在骨软骨组织工程中的应用。在本研究中,开发了一种坚固且坚韧、模拟骨软骨的功能性壳聚糖基水凝胶(双层凝胶),其下层具有矿化、骨传导性,上层含有碱性成纤维细胞生长因子(bFGF)、具有软骨诱导性。所获得的双层凝胶呈现出深度依赖性的梯度孔结构和组成。强大的双交联水凝胶网络以及下层羟基磷灰石纳米颗粒(HAp)的均匀沉积提供了高达2.5 MPa的抗压强度和高达40%的压缩应变。研究表明,双层凝胶促进上层的软骨生成分化和下层的成骨分化。植入实验表明,双层凝胶可同时促进透明软骨和软骨下骨的形成,从而改善骨软骨重建效果。因此,目前的双层凝胶在全层骨软骨缺损修复方面显示出巨大潜力。