Suppr超能文献

决策探索器:用于机器学习模型的反事实解释的决策探索器。

DECE: Decision Explorer with Counterfactual Explanations for Machine Learning Models.

出版信息

IEEE Trans Vis Comput Graph. 2021 Feb;27(2):1438-1447. doi: 10.1109/TVCG.2020.3030342. Epub 2021 Jan 28.

Abstract

With machine learning models being increasingly applied to various decision-making scenarios, people have spent growing efforts to make machine learning models more transparent and explainable. Among various explanation techniques, counterfactual explanations have the advantages of being human-friendly and actionable-a counterfactual explanation tells the user how to gain the desired prediction with minimal changes to the input. Besides, counterfactual explanations can also serve as efficient probes to the models' decisions. In this work, we exploit the potential of counterfactual explanations to understand and explore the behavior of machine learning models. We design DECE, an interactive visualization system that helps understand and explore a model's decisions on individual instances and data subsets, supporting users ranging from decision-subjects to model developers. DECE supports exploratory analysis of model decisions by combining the strengths of counterfactual explanations at instance- and subgroup-levels. We also introduce a set of interactions that enable users to customize the generation of counterfactual explanations to find more actionable ones that can suit their needs. Through three use cases and an expert interview, we demonstrate the effectiveness of DECE in supporting decision exploration tasks and instance explanations.

摘要

随着机器学习模型在各种决策场景中的应用越来越广泛,人们越来越努力地使机器学习模型更加透明和可解释。在各种解释技术中,反事实解释具有人性化和可操作性的优势——反事实解释告诉用户如何在对输入进行最小更改的情况下获得所需的预测。此外,反事实解释还可以作为模型决策的有效探针。在这项工作中,我们利用反事实解释的潜力来理解和探索机器学习模型的行为。我们设计了 DECE,这是一个交互式可视化系统,帮助理解和探索模型对单个实例和数据子集的决策,支持从决策主体到模型开发人员的各种用户。DECE 通过结合实例和子组级别的反事实解释的优势来支持对模型决策的探索性分析。我们还引入了一系列交互操作,使用户能够自定义反事实解释的生成,以找到更具可操作性的解释,以满足他们的需求。通过三个用例和一次专家访谈,我们展示了 DECE 在支持决策探索任务和实例解释方面的有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验