文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

MiMICRI: Towards Domain-centered Counterfactual Explanations of Cardiovascular Image Classification Models.

作者信息

Guo Grace, Deng Lifu, Tandon Animesh, Endert Alex, Kwon Bum Chul

机构信息

Georgia Institute of Technology Atlanta, Georgia, USA.

Cleveland Clinic Cleveland, Ohio, USA.

出版信息

FACCT 24 (2024). 2024 Jun;2024:1861-1874. doi: 10.1145/3630106.3659011. Epub 2024 Jun 5.


DOI:10.1145/3630106.3659011
PMID:39877054
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11774553/
Abstract

The recent prevalence of publicly accessible, large medical imaging datasets has led to a proliferation of artificial intelligence (AI) models for cardiovascular image classification and analysis. At the same time, the potentially significant impacts of these models have motivated the development of a range of explainable AI (XAI) methods that aim to explain model predictions given certain image inputs. However, many of these methods are not developed or evaluated with domain experts, and explanations are not contextualized in terms of medical expertise or domain knowledge. In this paper, we propose a novel framework and python library, MiMICRI, that provides domain-centered counterfactual explanations of cardiovascular image classification models. MiMICRI helps users interactively select and replace segments of medical images that correspond to morphological structures. From the counterfactuals generated, users can then assess the influence of each segment on model predictions, and validate the model against known medical facts. We evaluate this library with two medical experts. Our evaluation demonstrates that a domain-centered XAI approach can enhance the interpretability of model explanations, and help experts reason about models in terms of relevant domain knowledge. However, concerns were also surfaced about the clinical plausibility of the counterfactuals generated. We conclude with a discussion on the generalizability and trustworthiness of the MiMICRI framework, as well as the implications of our findings on the development of domain-centered XAI methods for model interpretability in healthcare contexts.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5c89/11774553/b6875693d179/nihms-2021031-f0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5c89/11774553/7600b87441ad/nihms-2021031-f0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5c89/11774553/3750e0c63bce/nihms-2021031-f0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5c89/11774553/ebab377f9ae4/nihms-2021031-f0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5c89/11774553/81a538de0a71/nihms-2021031-f0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5c89/11774553/ee7726666877/nihms-2021031-f0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5c89/11774553/b6875693d179/nihms-2021031-f0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5c89/11774553/7600b87441ad/nihms-2021031-f0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5c89/11774553/3750e0c63bce/nihms-2021031-f0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5c89/11774553/ebab377f9ae4/nihms-2021031-f0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5c89/11774553/81a538de0a71/nihms-2021031-f0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5c89/11774553/ee7726666877/nihms-2021031-f0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5c89/11774553/b6875693d179/nihms-2021031-f0006.jpg

相似文献

[1]
MiMICRI: Towards Domain-centered Counterfactual Explanations of Cardiovascular Image Classification Models.

FACCT 24 (2024). 2024-6

[2]
Using generative AI to investigate medical imagery models and datasets.

EBioMedicine. 2024-4

[3]
Human-centered evaluation of explainable AI applications: a systematic review.

Front Artif Intell. 2024-10-17

[4]
ExAID: A multimodal explanation framework for computer-aided diagnosis of skin lesions.

Comput Methods Programs Biomed. 2022-3

[5]
CLARUS: An interactive explainable AI platform for manual counterfactuals in graph neural networks.

J Biomed Inform. 2024-2

[6]
From local counterfactuals to global feature importance: efficient, robust, and model-agnostic explanations for brain connectivity networks.

Comput Methods Programs Biomed. 2023-6

[7]
GANterfactual-Counterfactual Explanations for Medical Non-experts Using Generative Adversarial Learning.

Front Artif Intell. 2022-4-8

[8]
Clinical domain knowledge-derived template improves post hoc AI explanations in pneumothorax classification.

J Biomed Inform. 2024-8

[9]
Essential properties and explanation effectiveness of explainable artificial intelligence in healthcare: A systematic review.

Heliyon. 2023-5-8

[10]
Explaining the black-box smoothly-A counterfactual approach.

Med Image Anal. 2023-2

本文引用的文献

[1]
SimpleClick: Interactive Image Segmentation with Simple Vision Transformers.

Proc IEEE Int Conf Comput Vis. 2023-10

[2]
Heterogeneity and predictors of the effects of AI assistance on radiologists.

Nat Med. 2024-3

[3]
Segment anything in medical images.

Nat Commun. 2024-1-22

[4]
Impossibility theorems for feature attribution.

Proc Natl Acad Sci U S A. 2024-1-9

[5]
Generalist Vision Foundation Models for Medical Imaging: A Case Study of Segment Anything Model on Zero-Shot Medical Segmentation.

Diagnostics (Basel). 2023-6-2

[6]
Explainable Artificial Intelligence and Cardiac Imaging: Toward More Interpretable Models.

Circ Cardiovasc Imaging. 2023-4

[7]
Ethics and governance of trustworthy medical artificial intelligence.

BMC Med Inform Decis Mak. 2023-1-13

[8]
Machine Learning in Cardiovascular Imaging: A Scoping Review of Published Literature.

Curr Radiol Rep. 2023

[9]
Artificial intelligence in cardiac imaging: where we are and what we want.

Eur Heart J. 2023-2-14

[10]
Explainable medical imaging AI needs human-centered design: guidelines and evidence from a systematic review.

NPJ Digit Med. 2022-10-19

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索