Jiang Kui, Wang Zhongyuan, Yi Peng, Lu Tao, Jiang Junjun, Xiong Zixiang
IEEE Trans Neural Netw Learn Syst. 2022 Jan;33(1):378-391. doi: 10.1109/TNNLS.2020.3027849. Epub 2022 Jan 5.
Along with the performance improvement of deep-learning-based face hallucination methods, various face priors (facial shape, facial landmark heatmaps, or parsing maps) have been used to describe holistic and partial facial features, making the cost of generating super-resolved face images expensive and laborious. To deal with this problem, we present a simple yet effective dual-path deep fusion network (DPDFN) for face image super-resolution (SR) without requiring additional face prior, which learns the global facial shape and local facial components through two individual branches. The proposed DPDFN is composed of three components: a global memory subnetwork (GMN), a local reinforcement subnetwork (LRN), and a fusion and reconstruction module (FRM). In particular, GMN characterize the holistic facial shape by employing recurrent dense residual learning to excavate wide-range context across spatial series. Meanwhile, LRN is committed to learning local facial components, which focuses on the patch-wise mapping relations between low-resolution (LR) and high-resolution (HR) space on local regions rather than the entire image. Furthermore, by aggregating the global and local facial information from the preceding dual-path subnetworks, FRM can generate the corresponding high-quality face image. Experimental results of face hallucination on public face data sets and face recognition on real-world data sets (VGGface and SCFace) show the superiority both on visual effect and objective indicators over the previous state-of-the-art methods.
随着基于深度学习的人脸超分辨率方法性能的提升,各种人脸先验(面部形状、面部地标热图或解析图)已被用于描述整体和局部面部特征,这使得生成超分辨率人脸图像的成本高昂且费力。为了解决这个问题,我们提出了一种简单而有效的双路径深度融合网络(DPDFN)用于人脸图像超分辨率(SR),无需额外的人脸先验,该网络通过两个独立的分支学习全局面部形状和局部面部组件。所提出的DPDFN由三个组件组成:全局记忆子网络(GMN)、局部增强子网络(LRN)和融合与重建模块(FRM)。具体而言,GMN通过采用循环密集残差学习来挖掘跨空间序列的广泛上下文,从而表征整体面部形状。同时,LRN致力于学习局部面部组件,它专注于局部区域上低分辨率(LR)和高分辨率(HR)空间之间的逐块映射关系,而不是整个图像。此外,通过聚合来自前面双路径子网络的全局和局部面部信息,FRM可以生成相应的高质量人脸图像。在公共人脸数据集上进行人脸超分辨率实验以及在真实世界数据集(VGGface和SCFace)上进行人脸识别的实验结果表明,在视觉效果和客观指标方面,该方法均优于先前的最先进方法。