Suppr超能文献

面部幻觉的点睛之笔。

Face Hallucination With Finishing Touches.

出版信息

IEEE Trans Image Process. 2021;30:1728-1743. doi: 10.1109/TIP.2020.3046918. Epub 2021 Jan 14.

Abstract

Obtaining a high-quality frontal face image from a low-resolution (LR) non-frontal face image is primarily important for many facial analysis applications. However, mainstreams either focus on super-resolving near-frontal LR faces or frontalizing non-frontal high-resolution (HR) faces. It is desirable to perform both tasks seamlessly for daily-life unconstrained face images. In this paper, we present a novel Vivid Face Hallucination Generative Adversarial Network (VividGAN) for simultaneously super-resolving and frontalizing tiny non-frontal face images. VividGAN consists of coarse-level and fine-level Face Hallucination Networks (FHnet) and two discriminators, i.e., Coarse-D and Fine-D. The coarse-level FHnet generates a frontal coarse HR face and then the fine-level FHnet makes use of the facial component appearance prior, i.e., fine-grained facial components, to attain a frontal HR face image with authentic details. In the fine-level FHnet, we also design a facial component-aware module that adopts the facial geometry guidance as clues to accurately align and merge the frontal coarse HR face and prior information. Meanwhile, two-level discriminators are designed to capture both the global outline of a face image as well as detailed facial characteristics. The Coarse-D enforces the coarsely hallucinated faces to be upright and complete while the Fine-D focuses on the fine hallucinated ones for sharper details. Extensive experiments demonstrate that our VividGAN achieves photo-realistic frontal HR faces, reaching superior performance in downstream tasks, i.e., face recognition and expression classification, compared with other state-of-the-art methods.

摘要

从低分辨率(LR)非正面人脸图像中获取高质量的正面人脸图像对于许多面部分析应用至关重要。然而,主流方法要么专注于超分辨近正面 LR 人脸,要么将非正面高分辨率(HR)人脸正面化。对于日常生活中无约束的人脸图像,希望能够无缝执行这两个任务。在本文中,我们提出了一种新颖的生动人脸幻觉生成对抗网络(VividGAN),用于同时超分辨和正面化微小的非正面人脸图像。VividGAN 由粗粒度和细粒度人脸幻觉网络(FHnet)和两个鉴别器组成,即粗鉴别器(Coarse-D)和细鉴别器(Fine-D)。粗粒度 FHnet 生成正面粗 HR 人脸,然后细粒度 FHnet 利用面部组件外观先验(即细粒度面部组件)来获得具有真实细节的正面 HR 人脸图像。在细粒度 FHnet 中,我们还设计了一个面部组件感知模块,该模块采用面部几何引导作为线索,准确地对齐和合并正面粗 HR 人脸和先验信息。同时,设计了两级鉴别器来捕捉人脸图像的全局轮廓和详细的面部特征。Coarse-D 强制对粗略幻觉化的人脸进行垂直和完整的处理,而 Fine-D 则专注于精细幻觉化的人脸以获得更清晰的细节。广泛的实验表明,我们的 VividGAN 实现了逼真的正面 HR 人脸,在下游任务(即人脸识别和表情分类)中表现优于其他最先进的方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验