Suppr超能文献

基于渐进式多阶段蒸馏卷积神经网络的图像重建。

Image Reconstruction Based on Progressive Multistage Distillation Convolution Neural Network.

机构信息

College of Information Science and Engineering, Xinjiang University, Urumqi 830046, China.

出版信息

Comput Intell Neurosci. 2022 May 9;2022:9637460. doi: 10.1155/2022/9637460. eCollection 2022.

Abstract

To address the problem that some current algorithms suffer from the loss of some important features due to rough feature distillation and the loss of key information in some channels due to compressed channel attention in the network, we propose a progressive multistage distillation network that gradually refines the features in stages to obtain the maximum amount of key feature information in them. In addition, to maximize the network performance, we propose a weight-sharing information lossless attention block to enhance the channel characteristics through a weight-sharing auxiliary path and, at the same time, use convolution layers to model the interchannel dependencies without compression, effectively avoiding the previous problem of information loss in channel attention. Extensive experiments on several benchmark data sets show that the algorithm in this paper achieves a good balance between network performance, the number of parameters, and computational complexity and achieves highly competitive performance in both objective metrics and subjective vision, which indicates the advantages of this paper's algorithm for image reconstruction. It can be seen that this gradual feature distillation from coarse to fine is effective in improving network performance. Our code is available at the following link: https://github.com/Cai631/PMDN.

摘要

为了解决一些现有算法因粗糙特征提取而丢失部分重要特征,以及因网络中压缩通道注意力而丢失部分关键信息的问题,我们提出了一种渐进式多阶段蒸馏网络,该网络逐步分阶段细化特征,以获取其中最大数量的关键特征信息。此外,为了最大限度地提高网络性能,我们提出了一种权重共享信息无损注意力块,通过权重共享辅助路径增强通道特征,同时使用卷积层对通道间的依赖关系进行建模,而不会进行压缩,有效地避免了之前通道注意力中信息丢失的问题。在几个基准数据集上的广泛实验表明,本文提出的算法在网络性能、参数数量和计算复杂度之间实现了良好的平衡,在客观指标和主观视觉方面都取得了极具竞争力的性能,这表明本文算法在图像重建方面具有优势。可以看出,这种从粗到细的逐步特征提取在提高网络性能方面是有效的。我们的代码可在以下链接获得:https://github.com/Cai631/PMDN。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/443a/9110147/5b164e1a2df5/CIN2022-9637460.001.jpg

相似文献

1
Image Reconstruction Based on Progressive Multistage Distillation Convolution Neural Network.
Comput Intell Neurosci. 2022 May 9;2022:9637460. doi: 10.1155/2022/9637460. eCollection 2022.
2
Swin Unet3D: a three-dimensional medical image segmentation network combining vision transformer and convolution.
BMC Med Inform Decis Mak. 2023 Feb 14;23(1):33. doi: 10.1186/s12911-023-02129-z.
3
HD-Former: A hierarchical dependency Transformer for medical image segmentation.
Comput Biol Med. 2024 Aug;178:108671. doi: 10.1016/j.compbiomed.2024.108671. Epub 2024 May 31.
4
Lightweight Image Super-Resolution Based on Re-Parameterization and Self-Calibrated Convolution.
Comput Intell Neurosci. 2022 Sep 26;2022:8628402. doi: 10.1155/2022/8628402. eCollection 2022.
5
Learning lightweight tea detector with reconstructed feature and dual distillation.
Sci Rep. 2024 Oct 10;14(1):23669. doi: 10.1038/s41598-024-73674-4.
6
Unsupervised Bidirectional Contrastive Reconstruction and Adaptive Fine-Grained Channel Attention Networks for image dehazing.
Neural Netw. 2024 Aug;176:106314. doi: 10.1016/j.neunet.2024.106314. Epub 2024 Apr 14.
8
Cycle contrastive adversarial learning with structural consistency for unsupervised high-quality image deraining transformer.
Neural Netw. 2024 Oct;178:106428. doi: 10.1016/j.neunet.2024.106428. Epub 2024 Jun 4.
9
Joint Dual Feature Distillation and Gradient Progressive Pruning for BERT compression.
Neural Netw. 2024 Nov;179:106533. doi: 10.1016/j.neunet.2024.106533. Epub 2024 Jul 17.
10
Cross-domain visual prompting with spatial proximity knowledge distillation for histological image classification.
J Biomed Inform. 2024 Oct;158:104728. doi: 10.1016/j.jbi.2024.104728. Epub 2024 Sep 21.

本文引用的文献

1
Task-Specific Normalization for Continual Learning of Blind Image Quality Models.
IEEE Trans Image Process. 2024;33:1898-1910. doi: 10.1109/TIP.2024.3371349. Epub 2024 Mar 12.
2
Continual Learning for Blind Image Quality Assessment.
IEEE Trans Pattern Anal Mach Intell. 2023 Mar;45(3):2864-2878. doi: 10.1109/TPAMI.2022.3178874. Epub 2023 Feb 3.
3
Efficient Image Super-Resolution via Self-Calibrated Feature Fuse.
Sensors (Basel). 2022 Jan 2;22(1):329. doi: 10.3390/s22010329.
4
Uncertainty-Aware Blind Image Quality Assessment in the Laboratory and Wild.
IEEE Trans Image Process. 2021;30:3474-3486. doi: 10.1109/TIP.2021.3061932. Epub 2021 Mar 9.
5
A Progressive Fusion Generative Adversarial Network for Realistic and Consistent Video Super-Resolution.
IEEE Trans Pattern Anal Mach Intell. 2022 May;44(5):2264-2280. doi: 10.1109/TPAMI.2020.3042298. Epub 2022 Apr 1.
6
Dual-Path Deep Fusion Network for Face Image Hallucination.
IEEE Trans Neural Netw Learn Syst. 2022 Jan;33(1):378-391. doi: 10.1109/TNNLS.2020.3027849. Epub 2022 Jan 5.
7
MADNet: A Fast and Lightweight Network for Single-Image Super Resolution.
IEEE Trans Cybern. 2021 Mar;51(3):1443-1453. doi: 10.1109/TCYB.2020.2970104. Epub 2021 Feb 17.
8
Residual Dense Network for Image Restoration.
IEEE Trans Pattern Anal Mach Intell. 2021 Jul;43(7):2480-2495. doi: 10.1109/TPAMI.2020.2968521. Epub 2021 Jun 8.
9
Image quality assessment: from error visibility to structural similarity.
IEEE Trans Image Process. 2004 Apr;13(4):600-12. doi: 10.1109/tip.2003.819861.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验