O'Brien Harrison E R, Zhang X Frank, Sanz-Hernandez Maximo, Chion Alain, Shapiro Susan, Mobayen Golzar, Xu Yan, De Simone Alfonso, Laffan Michael A, McKinnon Thomas A J
Department of Immunology and Inflammation, Centre for Haematology, Imperial College of Science Technology and Medicine, London, UK.
Institute of Structural and Molecular Biology, University College London, London, UK.
J Thromb Haemost. 2021 Feb;19(2):358-369. doi: 10.1111/jth.15142. Epub 2020 Nov 18.
Von Willebrand factor (VWF) contains a number of free thiols, the majority of which are located in its C-domains, and these have been shown to alter VWF function, However, the impact of free thiols on function following acute exposure of VWF to collagen under high and pathological shear stress has not been determined.
VWF free thiols were blocked with N-ethylmaleimide and flow assays performed under high and pathological shear rates to determine the impact on platelet capture and collagen binding function. Atomic force microscopy (AFM) was used to probe the interaction of VWF with collagen and molecular simulations conducted to determine the effect of free thiols on the flexibility of the VWF-C4 domain.
Blockade of VWF free thiols reduced VWF-mediated platelet capture to collagen in a shear-dependent manner, with platelet capture virtually abolished above 5000 s and in regions of stenosis in microfluidic channels. Direct visualization of VWF fibers formed under extreme pathological shear rates and analysis of collagen-bound VWF attributed the effect to altered binding of VWF to collagen. AFM measurements showed that thiol-blockade reduced the lifetime and strength of the VWF-collagen bond. Pulling simulations of the VWF-C4 domain demonstrated that with one or two reduced disulphide bonds the C4 domain has increased flexibility and the propensity to undergo free-thiol exchange.
We conclude that free thiols in the C-domains of VWF enhance the flexibility of the molecule and enable it to withstand high shear forces following collagen binding, demonstrating a previously unrecognized role for VWF free thiols.
血管性血友病因子(VWF)含有多个游离巯基,其中大部分位于其C结构域,并且这些游离巯基已被证明会改变VWF的功能。然而,在高剪切应力和病理剪切应力下VWF急性暴露于胶原蛋白后,游离巯基对其功能的影响尚未确定。
用N-乙基马来酰亚胺阻断VWF游离巯基,并在高剪切速率和病理剪切速率下进行流动分析,以确定对血小板捕获和胶原蛋白结合功能的影响。使用原子力显微镜(AFM)探测VWF与胶原蛋白的相互作用,并进行分子模拟以确定游离巯基对VWF-C4结构域柔韧性的影响。
阻断VWF游离巯基以剪切力依赖的方式减少了VWF介导的血小板与胶原蛋白的捕获,在微流控通道中,当剪切速率高于5000 s⁻¹以及在狭窄区域时,血小板捕获几乎完全消失。对在极端病理剪切速率下形成的VWF纤维进行直接可视化以及对与胶原蛋白结合的VWF进行分析,将这种影响归因于VWF与胶原蛋白结合的改变。AFM测量表明,巯基阻断降低了VWF-胶原蛋白键的寿命和强度。对VWF-C4结构域的拉伸模拟表明,当有一个或两个二硫键还原时,C4结构域的柔韧性增加,并且有进行游离巯基交换的倾向。
我们得出结论,VWF C结构域中的游离巯基增强了分子的柔韧性,并使其在与胶原蛋白结合后能够承受高剪切力,这表明VWF游离巯基具有先前未被认识到的作用。