Suppr超能文献

人工智能能否达到人类水平的性能?自我画像中儿童性虐待检测的初步研究。

Can artificial intelligence achieve human-level performance? A pilot study of childhood sexual abuse detection in self-figure drawings.

机构信息

Emili Sagol Creative Arts Therapies Research Center, University of Haifa, Israel.

ANIMA-EY LTD, Rishon Lezion, Israel.

出版信息

Child Abuse Negl. 2020 Nov;109:104755. doi: 10.1016/j.chiabu.2020.104755. Epub 2020 Oct 16.

Abstract

Childhood sexual abuse (CSA) is a worldwide phenomenon that has negative long-term consequences for the victims and their families, and inflicts a considerable economic toll on society. One of the main difficulties in treating CSA is victims' reluctance to disclose their abuse, and the failure of professionals to detect it when there is no forensic evidence (Bottoms et al., 2014; McElvaney, 2013). Estimated disclosure rates for child sexual abuse based on retrospective adult reports range from 23 % to 45 % (e.g., Bottoms et al., 2014). This study reports the four stages in the development of a Convolutional Neural Network (CNN) system designed to detect abuse in self-figure drawings: (1) A preliminary study to build a Gender CNN; (2) Expert-level performance evaluation, (3) validation of the CSA CNN, (4) testing of the CSA CNN model. The findings indicate that the Gender CNN achieved 88 % detection accuracy and outperformed the CSA CNN by 19 percentage points. The CSA CNN achieved 72 % accuracy on the test set with 80 % precision and 79 % recall for the abuse class prediction. However, human experts outperformed the CSA CNN by 16 percentage points, probably due to the complexity of the task. These preliminary results suggest that CNN, when further developed, can contribute to the detection of child sexual abuse.

摘要

儿童性虐待(CSA)是一种全球性现象,对受害者及其家庭造成长期的负面影响,并给社会造成相当大的经济损失。治疗 CSA 的主要困难之一是受害者不愿意透露他们的虐待行为,而且在没有法医证据的情况下,专业人员也无法发现(Bottoms 等人,2014 年;McElvaney,2013 年)。根据成人回顾性报告估计的儿童性虐待披露率在 23%到 45%之间(例如,Bottoms 等人,2014 年)。本研究报告了卷积神经网络(CNN)系统开发的四个阶段,该系统旨在检测自画像中的虐待行为:(1)初步研究以构建性别 CNN;(2)专家级性能评估,(3)CSA CNN 的验证,(4)CSA CNN 模型的测试。研究结果表明,性别 CNN 的检测准确率达到 88%,比 CSA CNN 高出 19 个百分点。CSA CNN 在测试集上的准确率为 72%,对虐待类别的预测精度为 80%,召回率为 79%。然而,人类专家比 CSA CNN 高出 16 个百分点,这可能是由于任务的复杂性。这些初步结果表明,CNN 在进一步开发后,可以有助于检测儿童性虐待。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验