Suppr超能文献

持续脉搏血氧饱和度作为新生儿呼吸窘迫预后因素的纵向分析

Longitudinal Analysis of Continuous Pulse Oximetry as Prognostic Factor in Neonatal Respiratory Distress.

作者信息

Solís-García Gonzalo, Maderuelo-Rodríguez Elena, Perez-Pérez Teresa, Torres-Soblechero Laura, Gutiérrez-Vélez Ana, Ramos-Navarro Cristina, López-Martínez Raúl, Sánchez-Luna Manuel

机构信息

Department of Neonatology, Hospital General Universitario Gregorio Marañón, Madrid, Spain.

Department of Statistics, Universidad Complutense de Madrid, Madrid, Spain.

出版信息

Am J Perinatol. 2022 Apr;39(6):677-682. doi: 10.1055/s-0040-1718877. Epub 2020 Oct 19.

Abstract

OBJECTIVE

Analysis of longitudinal data can provide neonatologists with tools that can help predict clinical deterioration and improve outcomes. The aim of this study is to analyze continuous monitoring data in newborns, using vital signs to develop predictive models for intensive care admission and time to discharge.

STUDY DESIGN

We conducted a retrospective cohort study, including term and preterm newborns with respiratory distress patients admitted to the neonatal ward. Clinical and epidemiological data, as well as mean heart rate and saturation, at every minute for the first 12 hours of admission were collected. Multivariate mixed, survival and joint models were developed.

RESULTS

A total of 56,377 heart rate and 56,412 oxygen saturation data were analyzed from 80 admitted patients. Of them, 73 were discharged home and 7 required transfer to the intensive care unit (ICU). Longitudinal evolution of heart rate ( < 0.01) and oxygen saturation ( = 0.01) were associated with time to discharge, as well as birth weight ( < 0.01) and type of delivery ( < 0.01). Longitudinal heart rate evolution ( < 0.01) and fraction of inspired oxygen at admission at the ward ( < 0.01) predicted neonatal ICU (NICU) admission.

CONCLUSION

Longitudinal evolution of heart rate can help predict time to transfer to intensive care, and both heart rate and oxygen saturation can help predict time to discharge. Analysis of continuous monitoring data in patients admitted to neonatal wards provides useful tools to stratify risks and helps in taking medical decisions.

KEY POINTS

· Continuous monitoring of vital signs can help predict and prevent clinical deterioration in neonatal patients.. · In our study, longitudinal analysis of heart rate and oxygen saturation predicted time to discharge and intensive care admission.. · More studies are needed to prospectively prove that these models can helpmake clinical decisions and stratify patients' risks..

摘要

目的

对纵向数据进行分析可为新生儿科医生提供有助于预测临床病情恶化及改善治疗结果的工具。本研究旨在分析新生儿的连续监测数据,利用生命体征建立重症监护病房收治及出院时间的预测模型。

研究设计

我们开展了一项回顾性队列研究,纳入入住新生儿病房的足月及早产呼吸窘迫患儿。收集入院后前12小时每分钟的临床及流行病学数据,以及平均心率和血氧饱和度。建立多变量混合模型、生存模型和联合模型。

结果

对80例入院患儿的56377次心率数据和56412次血氧饱和度数据进行了分析。其中,73例患儿出院回家,7例需转入重症监护病房(ICU)。心率(<0.01)和血氧饱和度(=0.01)的纵向变化与出院时间相关,出生体重(<0.01)和分娩方式(<0.01)也与之相关。心率纵向变化(<0.01)及病房入院时的吸入氧分数(<0.01)可预测新生儿重症监护病房(NICU)收治情况。

结论

心率的纵向变化有助于预测转入重症监护的时间,心率和血氧饱和度均有助于预测出院时间。对入住新生儿病房患者的连续监测数据分析可为风险分层提供有用工具,并有助于做出医疗决策。

要点

· 持续监测生命体征有助于预测和预防新生儿患者的临床病情恶化。· 在我们的研究中,心率和血氧饱和度的纵向分析可预测出院时间及重症监护病房收治情况。· 需要更多研究前瞻性地证明这些模型有助于做出临床决策并对患者风险进行分层。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验