Belousov Roman, Berger Florian, Hudspeth A J
Abdus Salam International Centre for Theoretical Physics Strada Costiera 11, 34151, Trieste, Italy.
Howard Hughes Medical Institute, Laboratory of Sensory Neuroscience, The Rockefeller University, New York, New York 10065, USA.
Phys Rev E. 2020 Sep;102(3-1):032209. doi: 10.1103/PhysRevE.102.032209.
The Van der Pol equation is a paradigmatic model of relaxation oscillations. This remarkable nonlinear phenomenon of self-sustained oscillatory motion underlies important rhythmic processes in nature and electrical engineering. Relaxation oscillations in a real system are usually coupled to environmental noise, which further enriches their dynamics, but makes theoretical analysis of such systems and determination of the equation parameter values a difficult task. In a companion paper we have proposed an analytic approach to a similar problem for another classical nonlinear model-the bistable Duffing oscillator. Here we extend our techniques to the case of the Van der Pol equation driven by white noise. We analyze the statistics of solutions and propose a method to estimate parameter values from the oscillator's time series. We use experimental data of active oscillations in a biophysical system to demonstrate how our method applies to real observations and can be generalized for more complex models.
范德波尔方程是弛豫振荡的典型模型。这种自持振荡运动的显著非线性现象是自然界和电气工程中重要节律过程的基础。实际系统中的弛豫振荡通常与环境噪声耦合,这进一步丰富了它们的动力学,但使得对此类系统的理论分析以及方程参数值的确定成为一项艰巨的任务。在一篇配套论文中,我们针对另一个经典非线性模型——双稳杜芬振荡器的类似问题提出了一种解析方法。在此,我们将我们的技术扩展到由白噪声驱动的范德波尔方程的情况。我们分析了解的统计特性,并提出了一种从振荡器的时间序列估计参数值的方法。我们使用生物物理系统中主动振荡的实验数据来证明我们的方法如何应用于实际观测,并且可以推广到更复杂的模型。