Suppr超能文献

听觉神经系统毛细胞束的复杂动力学(I):自发振荡和两种稳态情况

Complex dynamics of hair bundle of auditory nervous system (I): spontaneous oscillations and two cases of steady states.

作者信息

Cao Ben, Gu Huaguang, Ma Kaihua

机构信息

School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai, 200092 China.

出版信息

Cogn Neurodyn. 2022 Aug;16(4):917-940. doi: 10.1007/s11571-021-09744-4. Epub 2021 Nov 17.

Abstract

The hair bundles of inner hair cells in the auditory nervous exhibit spontaneous oscillations, which is the prerequisite for an important auditory function to enhance the sensitivity of inner ear to weak sounds, otoacoustic emission. In the present paper, the dynamics of spontaneous oscillations and relationships to steady state are acquired in a two-dimensional model with fast variable (displacement of hair bundles) and slow variable . The spontaneous oscillations are derived from negative stiffness modulated by two biological factors ( and ) and are identified to appear in multiple two-dimensional parameter planes. In (, ) plane, comprehensive bifurcations including 4 types of codimension-2 bifurcation and 5 types of codimension-1 bifurcation related to the spontaneous oscillations are acquired. The spontaneous oscillations are surrounded by supercritical and subcritical Hopf bifurcation curves, and outside of the curves are two cases of steady state. Case-1 and Case-2 steady states exhibit Z-shaped (coexistence of ) and N-shaped (coexistence of ) -nullclines, respectively. In (, ) plane, left and right to the spontaneous oscillations are two subcases of Case-1, which exhibit the stable equilibrium point locating on the upper and lower branches of -nullcline, respectively, resembling that of the neuron. Lower to the spontaneous oscillations are 3 subcases of Case-2 from left to right, which manifest stable equilibrium point locating on left, middle, and right branches of -nullcline, respectively, differing from that of the neuron. The phase plane for steady state is divided into four parts by nullclines, which manifest different vector fields. The phase trajectory of transient behavior beginning from a phase point in the four regions to the stable equilibrium point exhibits different dynamics determined by the vector fields, which is the basis to identify dynamical mechanism of complex forced oscillations induced by external signal. The results present comprehensive viewpoint and deep understanding for dynamics of the spontaneous oscillations and steady states of hair bundles, which can be used to well explain the experimental observations and to modulate functions of spontaneous oscillations.

摘要

听觉神经中内毛细胞的毛束表现出自发振荡,这是一种重要听觉功能的前提条件,该功能可增强内耳对微弱声音的敏感性,即耳声发射。在本文中,通过一个具有快速变量(毛束位移)和慢速变量的二维模型,获得了自发振荡的动力学及其与稳态的关系。自发振荡源自由两个生物学因素(和)调制的负刚度,并被确定出现在多个二维参数平面中。在(,)平面中,获得了包括4种余维2分岔和5种与自发振荡相关的余维1分岔在内的综合分岔。自发振荡被超临界和亚临界霍普夫分岔曲线所包围,曲线之外是两种稳态情况。情况1和情况2稳态分别表现出Z形(共存)和N形(共存)的零倾线。在(,)平面中,自发振荡的左右两侧分别是情况1的两个子情况,它们分别表现出稳定平衡点位于零倾线的上分支和下分支,类似于神经元的情况。自发振荡下方从左到右是情况2的3个子情况,它们分别表现出稳定平衡点位于零倾线的左、中、右分支,与神经元的情况不同。稳态的相平面被零倾线分为四个部分,表现出不同的向量场。从四个区域中的一个相点开始到稳定平衡点的瞬态行为的相轨迹表现出由向量场决定的不同动力学,这是识别外部信号诱导的复杂强迫振荡动力学机制的基础。这些结果为毛束的自发振荡和稳态动力学提供了全面的观点和深入的理解,可用于很好地解释实验观察结果并调节自发振荡的功能。

相似文献

1
Complex dynamics of hair bundle of auditory nervous system (I): spontaneous oscillations and two cases of steady states.
Cogn Neurodyn. 2022 Aug;16(4):917-940. doi: 10.1007/s11571-021-09744-4. Epub 2021 Nov 17.
2
Complex dynamics of hair bundle of auditory nervous system (II): forced oscillations related to two cases of steady state.
Cogn Neurodyn. 2022 Oct;16(5):1163-1188. doi: 10.1007/s11571-021-09745-3. Epub 2021 Nov 15.
3
Multiple bifurcations and coexistence in an inertial two-neuron system with multiple delays.
Cogn Neurodyn. 2020 Jun;14(3):359-374. doi: 10.1007/s11571-020-09575-9. Epub 2020 Mar 6.
4
Synchronization of Spontaneous Active Motility of Hair Cell Bundles.
PLoS One. 2015 Nov 5;10(11):e0141764. doi: 10.1371/journal.pone.0141764. eCollection 2015.
5
Spontaneous oscillations, signal amplification, and synchronization in a model of active hair bundle mechanics.
Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Apr;81(4 Pt 1):041913. doi: 10.1103/PhysRevE.81.041913. Epub 2010 Apr 14.
6
Spontaneous movements and linear response of a noisy oscillator.
Eur Phys J E Soft Matter. 2009 Aug;29(4):449-60. doi: 10.1140/epje/i2009-10487-5. Epub 2009 Aug 23.
7
Dynamics of Mechanically Coupled Hair-Cell Bundles of the Inner Ear.
Biophys J. 2021 Jan 19;120(2):205-216. doi: 10.1016/j.bpj.2020.11.2273. Epub 2020 Dec 15.
8
Transition between multimode oscillations in a loaded hair bundle.
Chaos. 2019 Aug;29(8):083135. doi: 10.1063/1.5109752.
9
Homoclinic snaking near a codimension-two Turing-Hopf bifurcation point in the Brusselator model.
Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Feb;87(2):022908. doi: 10.1103/PhysRevE.87.022908. Epub 2013 Feb 14.
10
Theoretical conditions for high-frequency hair bundle oscillations in auditory hair cells.
Biophys J. 2008 Nov 15;95(10):4948-62. doi: 10.1529/biophysj.108.138560. Epub 2008 Aug 1.

引用本文的文献

1
Sonification of electronic dynamical systems: Spectral characteristics and sound evaluation using EEG features.
Cogn Neurodyn. 2024 Oct;18(5):2751-2766. doi: 10.1007/s11571-024-10112-1. Epub 2024 May 9.
3
Complex dynamics of hair bundle of auditory nervous system (II): forced oscillations related to two cases of steady state.
Cogn Neurodyn. 2022 Oct;16(5):1163-1188. doi: 10.1007/s11571-021-09745-3. Epub 2021 Nov 15.

本文引用的文献

1
Complex dynamics of hair bundle of auditory nervous system (II): forced oscillations related to two cases of steady state.
Cogn Neurodyn. 2022 Oct;16(5):1163-1188. doi: 10.1007/s11571-021-09745-3. Epub 2021 Nov 15.
2
Energy dependence on discharge mode of Izhikevich neuron driven by external stimulus under electromagnetic induction.
Cogn Neurodyn. 2021 Apr;15(2):265-277. doi: 10.1007/s11571-020-09596-4. Epub 2020 May 11.
3
Coherence resonance for neuronal bursting with spike undershoot.
Cogn Neurodyn. 2021 Feb;15(1):77-90. doi: 10.1007/s11571-020-09595-5. Epub 2020 May 30.
4
Epileptic seizures in a heterogeneous excitatory network with short-term plasticity.
Cogn Neurodyn. 2021 Feb;15(1):43-51. doi: 10.1007/s11571-020-09582-w. Epub 2020 Mar 16.
5
Dynamics of Mechanically Coupled Hair-Cell Bundles of the Inner Ear.
Biophys J. 2021 Jan 19;120(2):205-216. doi: 10.1016/j.bpj.2020.11.2273. Epub 2020 Dec 15.
7
Decades-old model of slow adaptation in sensory hair cells is not supported in mammals.
Sci Adv. 2020 Aug 14;6(33):eabb4922. doi: 10.1126/sciadv.abb4922. eCollection 2020 Aug.
9
Effects of Efferent Activity on Hair Bundle Mechanics.
J Neurosci. 2020 Mar 18;40(12):2390-2402. doi: 10.1523/JNEUROSCI.1312-19.2020. Epub 2020 Feb 21.
10
Diverse Mechanisms of Sound Frequency Discrimination in the Vertebrate Cochlea.
Trends Neurosci. 2020 Feb;43(2):88-102. doi: 10.1016/j.tins.2019.12.003. Epub 2020 Jan 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验