Suppr超能文献

从用于模拟不可压缩和可压缩流动的气体动力学格式中提取的多尺度动力学无粘通量。

Multiscale kinetic inviscid flux extracted from a gas-kinetic scheme for simulating incompressible and compressible flows.

作者信息

Liu Sha, Cao Junzhe, Zhong Chengwen

机构信息

National Key Laboratory of Science and Technology on Aerodynamic Design and Research, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China.

School of Aeronautics, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China.

出版信息

Phys Rev E. 2020 Sep;102(3-1):033310. doi: 10.1103/PhysRevE.102.033310.

Abstract

A kinetic inviscid flux (KIF) is proposed for simulating incompressible and compressible flows. It is constructed based on the direct modeling of multiscale flow behaviors, which is used in the gas-kinetic scheme (GKS), the unified gas-kinetic scheme (UGKS), the discrete unified gas-kinetic scheme (DUGKS), etc. In KIF, the discontinuities (such as the shock wave) that cannot be well resolved by mesh cells are mainly solved by the kinetic flux vector splitting (KFVS) method representing the free transport mechanism (or microscale mechanism), while in other flow regions that are smooth, the flow behavior is solved mainly by the central-scheme-like totally thermalized transport (TTT). The weights of KFVS and TTT in KIF is automatically determined by those in the theory of direct modeling. Two ways of choosing the weights in KIF are proposed, which are actually the weights adopted in the UGKS and the DUGKS, respectively. By using the test cases of the Sod shock tube, the rarefaction wave, the boundary layer of a flat plate, the cavity flow, hypersonic flow over a circular cylinder, the shock and turbulent boundary iteration, and transonic flow over a three-dimensional M6 wing, the validity and accuracy of the present method are examined. The KIF does not suffer from the carbuncle phenomenon, and does not introduce extra numerical viscosity in smooth regions. Especially in the case of hypersonic cylinder, it gives quite sharp and clear density and temperature contours. The KIF can be viewed as an inviscid-viscous splitting version of the GKS. By doing this splitting, it is easy to be used in traditional computational fluid dynamics frameworks. It can also be classified as a type in the numerical schemes based on the kinetic theory that are represented by the works of Sun et al. [Adv. Appl. Math. Mech. 8, 703 (2016)10.4208/aamm.2015.m1071] and Ohwada et al. [J. Comput. Phys. 362, 131 (2018)JCTPAH0021-999110.1016/j.jcp.2018.02.019], except the weights are determined by the weights of direct modeling.

摘要

提出了一种动力学无粘通量(KIF)来模拟不可压缩和可压缩流动。它基于多尺度流动行为的直接建模构建,这种建模方法用于气体动力学格式(GKS)、统一气体动力学格式(UGKS)、离散统一气体动力学格式(DUGKS)等。在KIF中,网格单元无法很好解析的间断(如激波)主要通过代表自由输运机制(或微观尺度机制)的动力学通量矢量分裂(KFVS)方法求解,而在其他光滑的流动区域,流动行为主要通过类似中心格式的完全热化输运(TTT)求解。KIF中KFVS和TTT的权重由直接建模理论中的权重自动确定。提出了两种在KIF中选择权重的方法,它们实际上分别是UGKS和DUGKS中采用的权重。通过使用Sod激波管、稀疏波、平板边界层、空腔流动、圆柱绕流的高超声速流动、激波与湍流边界迭代以及三维M6机翼跨声速流动等测试案例,检验了本方法的有效性和准确性。KIF不存在“红斑”现象,并且在光滑区域不引入额外的数值粘性。特别是在高超声速圆柱绕流的情况下,它给出了相当清晰锐利的密度和温度等值线。KIF可以看作是GKS的一种无粘 - 粘性分裂形式。通过这种分裂,它很容易应用于传统的计算流体动力学框架。它也可以归类为基于孙等人[《应用数学与力学进展》8, 703 (2016)10.4208/aamm.2015.m1071]和大和田等人[《计算物理杂志》362, 131 (2018)JCTPAH0021 - 999110.1016/j.jcp.2018.02.019]的工作所代表的动力学理论的数值格式类型,只是权重由直接建模的权重确定。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验