Suppr超能文献

钩的大变形会影响游动的单鞭毛细菌在鞭毛运动期间的自由游动。

Large deformations of the hook affect free-swimming singly flagellated bacteria during flick motility.

机构信息

Department of Mechanical Engineering, University of Utah, Salt Lake City, Utah 84112, USA.

出版信息

Phys Rev E. 2020 Sep;102(3-1):033115. doi: 10.1103/PhysRevE.102.033115.

Abstract

Hook dynamics are important in the motility of singly flagellated bacteria during flick motility. Although the hook is relatively short, during reorientation events it may undergo large deformations, leading to nonlinear behavior. Here, we explore when these nonlinear and large deformations are important for the swimming dynamics in different ranges of hook flexibilities and flagellar motor torques. For this purpose, we investigate progressively more faithful models for the hook, starting with linear springs, then models that incorporate nonlinearities due to larger hook deformations. We also employ these models both with and without hydrodynamic interactions between the flagellum and cell body to test the importance of those hydrodynamic interactions. We show that for stiff hooks, bacteria swim with a flagellum rotating on-axis in orbits and hydrodynamic interactions between the cell body and flagellum change swimming speeds by about 40%. As the hook stiffness decreases, there is a critical hook stiffness that predicts the initiation of the dynamic instability causing flicks. We compare the transition value of stiffnesses predicted by our models to experiments and show that nonlinearity and large deflections do not significantly affect critical transition values, while hydrodynamic interactions can change transition values by up to 13%. Below the transition value, we observe precession of the flagellum, in which it deflects off-axis to undergo nearly circular stable trajectories. However, only slightly below the transition stiffness, nonlinearity in hook response destabilizes precession, leading to unstable deflections of the flagellum. We conclude that while the linear hook response can qualitatively predict transition stiffnesses, nonlinear models are necessary to capture the behavior of hooks for stiffnesses below transition. Furthermore, we show that for the lower range of hook stiffnesses observed in actual bacteria, models which capture the full deformations of hooks are necessary. Inclusion of the hydrodynamic interactions of the cell body, hook, and flagellum is required to quantitatively simulate nonlinear dynamics of soft hooks during flick motility.

摘要

钩的动力学在单一鞭毛细菌的鞭毛运动中的快速运动中很重要。尽管钩相对较短,但在重新定向事件中,它可能会经历大的变形,从而导致非线性行为。在这里,我们探讨了在不同的钩柔韧性和鞭毛马达扭矩范围内,这些非线性和大变形对游泳动力学的重要性。为此,我们从线性弹簧开始,逐步探索更忠实于钩的模型,然后探索由于更大的钩变形而导致的非线性模型。我们还在有和没有鞭毛和细胞体之间的流体动力相互作用的情况下使用这些模型,以测试这些流体动力相互作用的重要性。我们表明,对于刚性钩,细菌以鞭毛在轨道上旋转的方式游泳,并且细胞体和鞭毛之间的流体动力相互作用将游泳速度改变约 40%。随着钩的刚度降低,存在一个临界钩刚度,它预测导致快速运动的动态不稳定性的开始。我们将我们的模型预测的刚度的过渡值与实验进行比较,并表明非线性和大挠度不会显著影响临界过渡值,而流体动力相互作用可以使过渡值变化高达 13%。低于过渡值,我们观察到鞭毛的进动,其中它偏离轴以进行几乎圆形的稳定轨迹。然而,仅在略低于过渡刚度下,钩响应的非线性会使进动失稳,导致鞭毛的不稳定偏转。我们得出结论,虽然线性钩响应可以定性地预测过渡刚度,但在过渡刚度以下,需要非线性模型来捕获钩的行为。此外,我们表明,对于实际细菌中观察到的较低范围的钩刚度,需要捕获钩的全变形的模型。为了定量模拟软钩在快速运动中的非线性动力学,需要包括细胞体、钩和鞭毛的流体动力相互作用。

相似文献

5
Instabilities of a rotating helical rod in a viscous fluid.粘性流体中旋转螺旋杆的不稳定性。
Phys Rev E. 2017 Feb;95(2-1):022410. doi: 10.1103/PhysRevE.95.022410. Epub 2017 Feb 21.
7
Hydrodynamic analysis of flagellated bacteria swimming in corners of rectangular channels.对在矩形通道角落游动的鞭毛细菌的流体动力学分析。
Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Dec;92(6):063016. doi: 10.1103/PhysRevE.92.063016. Epub 2015 Dec 16.
9
Multiflagellarity leads to the size-independent swimming speed of peritrichous bacteria.多鞭毛导致边缘型细菌的游动速度与大小无关。
Proc Natl Acad Sci U S A. 2023 Nov 28;120(48):e2310952120. doi: 10.1073/pnas.2310952120. Epub 2023 Nov 22.
10
Fluid mechanics of swimming bacteria with multiple flagella.具有多条鞭毛的游动细菌的流体力学
Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Apr;89(4):042704. doi: 10.1103/PhysRevE.89.042704. Epub 2014 Apr 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验