Suppr超能文献

细菌鞭毛的钩长被优化为使鞭毛束达到最大的稳定性。

Hook length of the bacterial flagellum is optimized for maximal stability of the flagellar bundle.

机构信息

Institute for Biology - Bacterial Physiology, Humboldt-Universität zu Berlin, Berlin, Germany.

Junior Research Group Infection Biology of Salmonella, Helmholtz Centre for Infection Research, Braunschweig, Germany.

出版信息

PLoS Biol. 2018 Sep 6;16(9):e2006989. doi: 10.1371/journal.pbio.2006989. eCollection 2018 Sep.

Abstract

Most bacteria swim in liquid environments by rotating one or several flagella. The long external filament of the flagellum is connected to a membrane-embedded basal body by a flexible universal joint, the hook, which allows the transmission of motor torque to the filament. The length of the hook is controlled on a nanometer scale by a sophisticated molecular ruler mechanism. However, why its length is stringently controlled has remained elusive. We engineered and studied a diverse set of hook-length variants of Salmonella enterica. Measurements of plate-assay motility, single-cell swimming speed, and directional persistence in quasi-2D and population-averaged swimming speed and body angular velocity in 3D revealed that the motility performance is optimal around the wild-type hook length. We conclude that too-short hooks may be too stiff to function as a junction and too-long hooks may buckle and create instability in the flagellar bundle. Accordingly, peritrichously flagellated bacteria move most efficiently as the distance travelled per body rotation is maximal and body wobbling is minimized. Thus, our results suggest that the molecular ruler mechanism evolved to control flagellar hook growth to the optimal length consistent with efficient bundle formation. The hook-length control mechanism is therefore a prime example of how bacteria evolved elegant but robust mechanisms to maximize their fitness under specific environmental constraints.

摘要

大多数细菌通过旋转一个或多个鞭毛在液体环境中游动。鞭毛的长外部细丝通过一个灵活的万向接头(钩)连接到膜嵌入的基体上,该接头允许将马达扭矩传递到细丝上。钩的长度在纳米尺度上受到复杂的分子尺机制的控制。然而,其长度为什么受到严格控制仍然难以捉摸。我们设计并研究了一组不同的沙门氏菌 enterica 的钩长度变体。平板测定运动性、单细胞游动速度、准二维中的方向持久性以及 3D 中群体平均游动速度和体角速度的测量表明,在野生型钩长度附近,运动性能最佳。我们得出的结论是,太短的钩可能太硬而无法作为连接点,而太长的钩可能会弯曲并在鞭毛束中产生不稳定性。因此,旋转对称鞭毛细菌的运动效率最高,因为每转体的行进距离最大,体摆动最小。因此,我们的结果表明,分子尺机制的进化是为了将鞭毛钩的生长控制到最佳长度,从而与有效的束形成一致。因此,钩长度控制机制是细菌如何进化出优雅但强大的机制来最大限度地提高在特定环境约束下适应性的一个很好的例子。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/085a/6126814/8a16106b6c5d/pbio.2006989.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验