Biomedical Engineering, Oregon Health & Science University, Portland, United States.
Multiscale Microscopy Core, Oregon Health & Science University, Portland, United States.
Elife. 2020 Oct 20;9:e58138. doi: 10.7554/eLife.58138.
Cardiac pumping depends on the morphological structure of the heart, but also on its subcellular (ultrastructural) architecture, which enables cardiac contraction. In cases of congenital heart defects, localized ultrastructural disruptions that increase the risk of heart failure are only starting to be discovered. This is in part due to a lack of technologies that can image the three-dimensional (3D) heart structure, to assess malformations; and its ultrastructure, to assess organelle disruptions. We present here a multiscale, correlative imaging procedure that achieves high-resolution images of the whole heart, using 3D micro-computed tomography (micro-CT); and its ultrastructure, using 3D scanning electron microscopy (SEM). In a small animal model (chicken embryo), we achieved uniform fixation and staining of the whole heart, without losing ultrastructural preservation on the same sample, enabling correlative multiscale imaging. Our approach enables multiscale studies in models of congenital heart disease and beyond.
心脏的泵血功能不仅依赖于心脏的形态结构,还依赖于其亚细胞(超微结构)结构,后者使心脏能够收缩。在先天性心脏缺陷的情况下,局部的超微结构破坏会增加心力衰竭的风险,但目前才刚刚开始被发现。部分原因是缺乏能够对心脏的三维(3D)结构进行成像以评估畸形,以及对细胞器破坏进行成像以评估超微结构的技术。我们在这里提出了一种多尺度相关成像程序,该程序使用 3D 微计算机断层扫描(micro-CT)对整个心脏进行高分辨率成像;并使用 3D 扫描电子显微镜(SEM)对其超微结构进行成像。在小动物模型(鸡胚)中,我们实现了整个心脏的均匀固定和染色,而不会在同一样本上丢失超微结构保存,从而实现了相关的多尺度成像。我们的方法可用于先天性心脏病等疾病模型的多尺度研究。