Suppr超能文献

心力衰竭的多尺度特征分析。

Multiscale characterization of heart failure.

机构信息

Departments of Mechanical Engineering & Bioengineering, Stanford University, CA, USA.

California Medical Innovations Institute, Inc., San Diego, CA, USA.

出版信息

Acta Biomater. 2019 Mar 1;86:66-76. doi: 10.1016/j.actbio.2018.12.053. Epub 2019 Jan 7.

Abstract

Dilated cardiomyopathy is a progressive irreversible disease associated with contractile dysfunction and heart failure. During dilated cardiomyopathy, elevated diastolic wall strains trigger mechanotransduction pathways that initiate the addition of sarcomeres in series and an overall increase in myocyte length. At the whole organ level, this results in a chronic dilation of the ventricles, an increase in end diastolic and end systolic volumes, and a decrease in ejection fraction. However, how exactly changes in sarcomere number translate into changes in myocyte morphology, and how these cellular changes translate into ventricular dilation remains incompletely understood. Here we combined a chronic animal study, continuum growth modeling, and machine learning to quantify correlations between sarcomere dynamics, myocyte morphology, and ventricular dilation. In an eight-week long volume overload study of six pigs, we found that the average sarcomere number increased by +3.8%/week, from 47 to 62, resulting in a myocyte lengthening of +3.3%/week, from 85 to 108 μm, while the sarcomere length and myocyte width remained unchanged. At the same time, the average end diastolic volume increased by +6.0%/week. Using continuum growth modeling and Bayesian inference, we correlated alterations on the subcellular, cellular, and organ scales and found that the serial sarcomere number explained 88% of myocyte lengthening, which, in turn, explained 54% of cardiac dilation. Our results demonstrate that sarcomere number and myocyte length are closely correlated and constitute the major determinants of dilated heart failure. We anticipate our study to be a starting point for more sophisticated multiscale models of heart failure. Our study suggests that altering sarcomere turnover-and with it myocyte morphology and ventricular dimensions-could be a potential therapeutic target to attenuate or reverse the progression of heart failure. STATEMENT OF SIGNIFICANCE: Heart failure is a significant global health problem that affects more than 25 million people worldwide and increases in prevalence as the population ages. Heart failure has been studied excessively at various scales; yet, there is no compelling concept to connect knowledge from the subcellular, cellular, and organ level across the scales. Here we combined a chronic animal study, continuum growth modeling, and machine learning to quantify correlations between sarcomere dynamics, myocyte morphology, and ventricular dilation. We found that the serial sarcomere number explained 88% of myocyte lengthening, which, in turn, explained 54% of cardiac dilation. Our results show that sarcomere number and myocyte length are closely correlated and constitute the major determinants of dilated heart failure. This suggests that altering the sarcomere turnover-and with it myocyte morphology and ventricular dimensions-could be a potential therapeutic target to attenuate or reverse heart failure.

摘要

扩张型心肌病是一种进行性、不可逆的疾病,与收缩功能障碍和心力衰竭有关。在扩张型心肌病中,升高的舒张壁应变引发机械转导途径,导致肌节串联增加,心肌细胞长度总体增加。在整个器官水平上,这会导致心室慢性扩张、舒张末期和收缩末期容积增加以及射血分数降低。然而,肌节数量的变化如何精确转化为心肌细胞形态的变化,以及这些细胞变化如何转化为心室扩张,仍不完全清楚。在这里,我们结合了一项慢性动物研究、连续体生长模型和机器学习,以量化肌节动力学、心肌细胞形态和心室扩张之间的相关性。在一项为期八周的六头猪容量超负荷研究中,我们发现平均肌节数量每周增加+3.8%,从 47 个增加到 62 个,导致心肌细胞长度每周增加+3.3%,从 85 微米增加到 108 微米,而肌节长度和心肌细胞宽度保持不变。同时,平均舒张末期容积每周增加+6.0%。使用连续体生长模型和贝叶斯推断,我们对亚细胞、细胞和器官尺度上的变化进行了相关分析,发现串联肌节数量解释了心肌细胞伸长的 88%,而心肌细胞伸长又解释了心脏扩张的 54%。我们的研究结果表明,肌节数量和心肌细胞长度密切相关,是扩张性心力衰竭的主要决定因素。我们预计我们的研究将成为心力衰竭更复杂的多尺度模型的起点。我们的研究表明,改变肌节周转率——随之改变心肌细胞形态和心室尺寸——可能是减轻或逆转心力衰竭进展的潜在治疗靶点。

意义声明

心力衰竭是一个重大的全球健康问题,影响着全球超过 2500 万人,并且随着人口老龄化而增加。心力衰竭已经在各个尺度上进行了过度研究;然而,没有一个引人注目的概念可以将亚细胞、细胞和器官水平的知识联系起来。在这里,我们结合了一项慢性动物研究、连续体生长模型和机器学习,以量化肌节动力学、心肌细胞形态和心室扩张之间的相关性。我们发现串联肌节数量解释了心肌细胞伸长的 88%,而心肌细胞伸长又解释了心脏扩张的 54%。我们的研究结果表明,肌节数量和心肌细胞长度密切相关,是扩张性心力衰竭的主要决定因素。这表明改变肌节周转率——随之改变心肌细胞形态和心室尺寸——可能是减轻或逆转心力衰竭的潜在治疗靶点。

相似文献

1
Multiscale characterization of heart failure.心力衰竭的多尺度特征分析。
Acta Biomater. 2019 Mar 1;86:66-76. doi: 10.1016/j.actbio.2018.12.053. Epub 2019 Jan 7.
2
Using machine learning to characterize heart failure across the scales.运用机器学习方法对心力衰竭进行多尺度特征化研究。
Biomech Model Mechanobiol. 2019 Dec;18(6):1987-2001. doi: 10.1007/s10237-019-01190-w. Epub 2019 Jun 25.
6
Myocyte changes in heart failure.心力衰竭中的心肌细胞变化。
Heart Fail Clin. 2012 Jan;8(1):1-6. doi: 10.1016/j.hfc.2011.08.004. Epub 2011 Oct 13.
8
The cellular basis of dilated cardiomyopathy in humans.人类扩张型心肌病的细胞基础。
J Mol Cell Cardiol. 1995 Jan;27(1):291-305. doi: 10.1016/s0022-2828(08)80028-4.

引用本文的文献

9
Multiscale modeling meets machine learning: What can we learn?多尺度建模与机器学习相遇:我们能学到什么?
Arch Comput Methods Eng. 2021 May;28(3):1017-1037. doi: 10.1007/s11831-020-09405-5. Epub 2020 Feb 17.

本文引用的文献

2
Predicting the cardiac toxicity of drugs using a novel multiscale exposure-response simulator.使用新型多尺度暴露-反应模拟器预测药物的心脏毒性。
Comput Methods Biomech Biomed Engin. 2018 Feb;21(3):232-246. doi: 10.1080/10255842.2018.1439479. Epub 2018 Mar 1.
3
Predicting drug-induced arrhythmias by multiscale modeling.通过多尺度建模预测药物诱导的心律失常。
Int J Numer Method Biomed Eng. 2018 May;34(5):e2964. doi: 10.1002/cnm.2964. Epub 2018 Mar 25.
7
A virtual sizing tool for mitral valve annuloplasty.一种用于二尖瓣环成形术的虚拟尺寸测量工具。
Int J Numer Method Biomed Eng. 2017 Feb;33(2). doi: 10.1002/cnm.2788. Epub 2016 Apr 20.
8
Modeling Pathologies of Diastolic and Systolic Heart Failure.舒张性和收缩性心力衰竭的病理建模
Ann Biomed Eng. 2016 Jan;44(1):112-27. doi: 10.1007/s10439-015-1351-2. Epub 2015 Jun 5.
9
Origin of cardiomyocytes in the adult heart.成年心脏中心肌细胞的起源。
Circ Res. 2015 Jan 2;116(1):150-66. doi: 10.1161/CIRCRESAHA.116.303595.
10
Use it or lose it: multiscale skeletal muscle adaptation to mechanical stimuli.用进废退:机械刺激对骨骼肌的多尺度适应。
Biomech Model Mechanobiol. 2015 Apr;14(2):195-215. doi: 10.1007/s10237-014-0607-3. Epub 2014 Sep 9.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验