Paul Scherrer Institut, Villigen PSI, Switzerland.
Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland.
Sci Rep. 2019 May 6;9(1):6996. doi: 10.1038/s41598-019-43407-z.
Cardiovascular diseases (CVDs) affect the myocardium and vasculature, inducing remodelling of the heart from cellular to whole organ level. To assess their impact at micro and macroscopic level, multi-resolution imaging techniques that provide high quality images without sample alteration and in 3D are necessary: requirements not fulfilled by most of current methods. In this paper, we take advantage of the non-destructive time-efficient 3D multiscale capabilities of synchrotron Propagation-based X-Ray Phase Contrast Imaging (PB-X-PCI) to study a wide range of cardiac tissue characteristics in one healthy and three different diseased rat models. With a dedicated image processing pipeline, PB-X-PCI images are analysed in order to show its capability to assess different cardiac tissue components at both macroscopic and microscopic levels. The presented technique evaluates in detail the overall cardiac morphology, myocyte aggregate orientation, vasculature changes, fibrosis formation and nearly single cell arrangement. Our results agree with conventional histology and literature. This study demonstrates that synchrotron PB-X-PCI, combined with image processing tools, is a powerful technique for multi-resolution structural investigation of the heart ex-vivo. Therefore, the proposed approach can improve the understanding of the multiscale remodelling processes occurring in CVDs, and the comprehensive and fast assessment of future interventional approaches.
心血管疾病(CVDs)影响心肌和脉管系统,导致心脏从细胞到整个器官水平的重塑。为了在微观和宏观层面评估它们的影响,需要使用多分辨率成像技术,这些技术能够提供高质量的图像,而不会改变样本,并且可以在 3D 中进行:这是大多数当前方法无法满足的要求。在本文中,我们利用同步辐射基于传播的 X 射线相衬成像(PB-X-PCI)的非破坏性、高效的 3D 多尺度特性,研究了一个健康大鼠模型和三个不同疾病大鼠模型中的广泛的心脏组织特征。通过专用的图像处理管道,对 PB-X-PCI 图像进行分析,以展示其在宏观和微观层面评估不同心脏组织成分的能力。所提出的技术详细评估了整体心脏形态、心肌细胞聚集方向、脉管系统变化、纤维化形成和几乎单细胞排列。我们的结果与常规组织学和文献一致。这项研究表明,同步辐射 PB-X-PCI 与图像处理工具相结合,是一种用于心脏离体多分辨率结构研究的强大技术。因此,所提出的方法可以提高对 CVD 中发生的多尺度重塑过程的理解,并对未来的介入方法进行全面和快速的评估。