Department of Implant Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
Clin Implant Dent Relat Res. 2021 Feb;23(1):19-30. doi: 10.1111/cid.12959. Epub 2020 Oct 20.
Although the traditional bone augmentation technology can basically meet the clinical needs at present, the effect of bone augmentation in most cases is related to the experience of the operator.
This study commits to providing a digital solution for precise bone augmentation in the field of oral implantology.
After collecting the data of patients' intraoral scanning and DICOM (digital imaging and communications in medicine), the implant position is digitally designed, and the alveolar bone is digitally augmented around the ideal implant position. On the premise of ensuring that the thickness of labial bone is 2 mm, and there is sufficient alveolar bone 3 to 4 mm apically from the ideal gingival margin for implant placing, we carry out excessive augmentation of 0.5 and 1 mm on the labial bone and alveolar crest, respectively, to compensate for possible bone resorption after 6 months. After 3D printing the reconstructed alveolar bone model, the titanium mesh is trimmed and preformed on the alveolar bone model. Outcomes are reported in terms of mean values (5%-95% percentile values).
Thirty implant sites have accepted this novel virtually designed alveolar bone augmentation. Before the second-stage surgery, the average vertical bone gain was 2.48 mm (0.29-6.32), the average horizontal bone gain was 4.11 mm (1.19-8.74), the average height of the residual alveolar bone above the implant platform was 1.44 mm (0.59-2.92), the average thickness of the labial bone width at the implant platform was 2.00 mm (0.93-3.64), the average thickness of the labial bone width at 2 mm apically from the implant platform was 2.74 mm (1.40-5.46). The virtual augmentation of each tooth position was 349.41 mm (165.70-482.70), while the actual augmentation of each tooth position was 352.94 mm (159.24-501.78), the accuracy of the final actual augmentation reached 95.82% (range from 88.53% to 99.15%).
This case series suggests that a virtually digital guided bone regeneration (GBR) workflow is precise and controllable. The practicality, safety and effectiveness of this procedure needs to be compared to other bone augmentation procedures in randomized controlled trials.
尽管传统的骨增量技术目前基本可以满足临床需求,但大多数情况下的骨增量效果与操作者的经验有关。
本研究致力于为口腔种植学领域的精确骨增量提供数字化解决方案。
在收集患者口内扫描和 DICOM(医学数字成像和通信)数据后,对种植位置进行数字化设计,并在理想种植位置周围对牙槽骨进行数字化增量。在保证唇侧骨厚度为 2mm,理想牙龈缘下牙槽骨有 3-4mm 可供种植的前提下,分别对唇侧骨和牙槽嵴进行 0.5mm 和 1mm 的过度增量,以补偿 6 个月后可能发生的骨吸收。3D 打印重建的牙槽骨模型后,在牙槽骨模型上修剪和预成型钛网。结果以平均值(5%-95%分位数值)报告。
30 个种植部位接受了这种新的虚拟设计牙槽骨增量。二期手术前,平均垂直骨增量为 2.48mm(0.29-6.32),平均水平骨增量为 4.11mm(1.19-8.74),种植平台上方剩余牙槽骨的平均高度为 1.44mm(0.59-2.92),种植平台唇侧骨宽度的平均厚度为 2.00mm(0.93-3.64),种植平台下 2mm 处唇侧骨宽度的平均厚度为 2.74mm(1.40-5.46)。每个牙位的虚拟增量为 349.41mm(165.70-482.70),而每个牙位的实际增量为 352.94mm(159.24-501.78),最终实际增量的准确性达到 95.82%(范围为 88.53%-99.15%)。
本病例系列表明,虚拟数字化引导的骨再生(GBR)流程具有精确性和可控性。该方法的实用性、安全性和有效性需要在随机对照试验中与其他骨增量方法进行比较。