Suppr超能文献

利用历史数据对基于制粒的工业片剂制造生产线进行多元前馈过程控制和优化。

Multivariate feed forward process control and optimization of an industrial, granulation based tablet manufacturing line using historical data.

机构信息

Department of Pharmaceutical Technology and Biopharmacy, "Iuliu Hatieganu" University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania.

Department of Pharmaceutical Technology and Biopharmacy, "Iuliu Hatieganu" University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania.

出版信息

Int J Pharm. 2020 Dec 15;591:119988. doi: 10.1016/j.ijpharm.2020.119988. Epub 2020 Oct 17.

Abstract

The purpose of this work was to understand the variability in disintegration time and tableting yield of high drug load (>60%) tablets prepared by batch-wise high shear wet granulation. The novelty of the study is the use of multivariate methods (Batch Evolution Models - BEMs and Batch Level Models - BLMs) to enhance process control, with a feed forward component, using prediction models built from a historical dataset acquired for 95 industrial scale batches. Time dependent process variables and significant influences on investigated parameters were identified. Prediction of output from input was tested with Partial Least Squares (PLS) and Artificial Neural Network (ANN) modeling. A reliable prediction ability was achieved for granulation water amount (±2 kg in a 16-31 kg range), tableting speed (±5000 tablets/h in a 23,000-72,500 tabl./h range) and disintegration time of cores (±100 s; in a 250-900 s range). Offsets from the optimal process evolution and certain raw material properties were correlated with differences observed in the output variables. Improvement options were identified for 80% of the batches with high disintegration time. Hence, the trained models can be applied for systematic process improvement, enabling feed forward control.

摘要

这项工作的目的是了解通过批式高剪切湿法制粒制备高载药量(>60%)片剂时崩解时间和片剂得率的可变性。本研究的新颖之处在于使用多元方法(批进化模型-BEM 和批水平模型-BLM)来增强过程控制,并具有前馈组件,使用从用于 95 个工业规模批次的历史数据集获得的预测模型。确定了与研究参数相关的时间相关过程变量和显著影响。使用偏最小二乘(PLS)和人工神经网络(ANN)建模测试了从输入到输出的预测。可靠地实现了对制粒用水量(16-31kg 范围内±2kg)、压片速度(23000-72500 片/小时范围内±5000 片/小时)和芯体崩解时间(±100s;250-900s 范围内)的预测。从最优过程演变和某些原材料性能得出的偏差与观察到的输出变量之间的差异有关。对 80%崩解时间较长的批次确定了改进方案。因此,可以将训练有素的模型应用于系统的过程改进,实现前馈控制。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验