Suppr超能文献

基于心率总变异性参数的机器学习技术检测缺血性心脏病患者。

Detection of subjects with ischemic heart disease by using machine learning technique based on heart rate total variability parameters.

机构信息

Department of Engineering and Architecture, University of Trieste, Trieste, Italy.

Cardiovascular Department, University of Trieste, Trieste, Italy.

出版信息

Physiol Meas. 2020 Dec 9;41(11). doi: 10.1088/1361-6579/abc321.

Abstract

: Ischemic heart disease (IHD), in its chronic stable form, is a subtle pathology due to its silent behavior before developing in unstable angina, myocardial infarction or sudden cardiac death. The clinical assessment is based on typical symptoms and finally confirmed, invasively, by coronary angiography. Recently, heart rate variability (HRV) analysis as well as some machine learning algorithms like artificial neural networks (ANNs) were used to identify cardiovascular arrhythmias and, only in few cases, to classify IHD segments in a limited number of subjects. The goal of this study was the identification of the ANN structure and the HRV parameters producing the best performance to identify IHD patients in a non-invasive way, validating the results on a large sample of subjects. Moreover, we examined the influence of a clinical non-invasive parameter, the left ventricular ejection fraction (LVEF), on the classification performance.: To this aim, we extracted several linear and non-linear parameters from 24 h RR signal, considering both normal and ectopic beats (heart rate total variability), of 251 normal and 245 IHD subjects, matched by age and gender. ANNs using several different combinations of these parameters together with age and gender were tested. For each ANN, we varied the number of hidden neurons from 2 to 7 and simulated 100 times, changing randomly the training and test dataset.: The HRTV parameters showed significant greater variability in IHD than in normal subjects. The ANN applied to mean RR, LF, LF/HF, beta exponent, SD2 together with age and gender reached a maximum accuracy of 71.8% and, by adding as input LVEF, an accuracy of 79.8%.: The study provides a deep insight into how a combination of some HRTV parameters and LVEF could be exploited to reliably detect the presence of subjects affected by IHD.

摘要

: 缺血性心脏病(IHD)在其慢性稳定形式下是一种微妙的病理学,因为它在发展为不稳定型心绞痛、心肌梗死或心源性猝死之前表现为无症状。临床评估基于典型症状,最终通过冠状动脉造影进行有创性确认。最近,心率变异性(HRV)分析以及一些机器学习算法,如人工神经网络(ANNs),被用于识别心血管心律失常,并且仅在少数情况下,在有限数量的受试者中对 IHD 节段进行分类。本研究的目的是确定 ANN 结构和 HRV 参数,以无创方式识别 IHD 患者,并在大量受试者中验证结果。此外,我们还研究了临床无创参数——左心室射血分数(LVEF)对分类性能的影响。: 为此,我们从 251 名正常和 245 名 IHD 受试者的 24 小时 RR 信号中提取了一些线性和非线性参数,这些信号同时考虑了正常和异位搏动(心率总变异性)。使用这些参数的几种不同组合以及年龄和性别测试了 ANN。对于每个 ANN,我们从 2 到 7 个隐藏神经元的数量变化,并随机改变训练和测试数据集进行了 100 次模拟。: HRTV 参数在 IHD 患者中显示出比正常受试者更大的变异性。应用于平均 RR、LF、LF/HF、β指数、SD2 以及年龄和性别,ANN 达到了 71.8%的最大准确性,通过添加输入 LVEF,准确性达到了 79.8%。: 该研究深入探讨了如何结合一些 HRTV 参数和 LVEF 来可靠地检测患有 IHD 的受试者的存在。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验