Suppr超能文献

基于心率总变异性的缺血性心脏病和特发性扩张型心肌病的诊断 CART 模型研究。

Toward a diagnostic CART model for Ischemic heart disease and idiopathic dilated cardiomyopathy based on heart rate total variability.

机构信息

Department Engineering and Architecture, University of Trieste, Trieste, Italy.

Cardiovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI) and University of Trieste, Trieste, Italy.

出版信息

Med Biol Eng Comput. 2022 Sep;60(9):2655-2663. doi: 10.1007/s11517-022-02618-9. Epub 2022 Jul 9.

Abstract

Diagnosis of etiology in early-stage ischemic heart disease (IHD) and dilated cardiomyopathy (DCM) patients may be challenging. We aimed at investigating, by means of classification and regression tree (CART) modeling, the predictive power of heart rate variability (HRV) features together with clinical parameters to support the diagnosis in the early stage of IHD and DCM. The study included 263 IHD and 181 DCM patients, as well as 689 healthy subjects. A 24 h Holter monitoring was used and linear and non-linear HRV parameters were extracted considering both normal and ectopic beats (heart rate total variability signal). We used a CART algorithm to produce classification models based on HRV together with relevant clinical (age, sex, and left ventricular ejection fraction, LVEF) features. Among HRV parameters, MeanRR, SDNN, pNN50, LF, LF/HF, LFn, FD, Beta exp were selected by the CART algorithm and included in the produced models. The model based on pNN50, FD, sex, age, and LVEF features presented the highest accuracy (73.3%). The proposed approach based on HRV parameters, age, sex, and LVEF features highlighted the possibility to produce clinically interpretable models capable to differentiate IHD, DCM, and healthy subjects with accuracy which is clinically relevant in first steps of the IHD and DCM diagnostic process.

摘要

早期缺血性心脏病 (IHD) 和扩张型心肌病 (DCM) 患者的病因诊断可能具有挑战性。我们旨在通过分类回归树 (CART) 建模,研究心率变异性 (HRV) 特征与临床参数相结合的预测能力,以支持 IHD 和 DCM 早期的诊断。该研究纳入了 263 例 IHD 患者和 181 例 DCM 患者,以及 689 名健康受试者。使用 24 小时 Holter 监测,并提取线性和非线性 HRV 参数,同时考虑正常和异位搏动(心率总变异性信号)。我们使用 CART 算法基于 HRV 以及相关的临床(年龄、性别和左心室射血分数,LVEF)特征生成分类模型。在 HRV 参数中,MeanRR、SDNN、pNN50、LF、LF/HF、LFn、FD、Beta exp 被 CART 算法选择并包含在生成的模型中。基于 pNN50、FD、性别、年龄和 LVEF 特征的模型表现出最高的准确性(73.3%)。基于 HRV 参数、年龄、性别和 LVEF 特征的方法突出了产生临床可解释模型的可能性,这些模型能够以临床相关的准确性区分 IHD、DCM 和健康受试者,这在 IHD 和 DCM 诊断过程的早期步骤中具有重要意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0521/9365754/6e4cb5acf4ef/11517_2022_2618_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验