Suppr超能文献

非侵入式精细居家护理监测:基于骨骼的人体感应技术对居家姿势变化的特征描述。

Nonintrusive Fine-Grained Home Care Monitoring: Characterizing Quality of In-Home Postural Changes Using Bone-Based Human Sensing.

机构信息

Graduate School of System Informatics, Kobe University, 1-1 Rokkodai-cho, Nada, Kobe 657-8501, Japan.

RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan.

出版信息

Sensors (Basel). 2020 Oct 18;20(20):5894. doi: 10.3390/s20205894.

Abstract

In contrast to the physical activities of able-bodied people at home, most people who require long-term specific care (e.g., bedridden patients and patients who have difficulty walking) usually show more low-intensity slow physical activities with postural changes. Although the existing devices can detect data such as heart rate and the number of steps, they have been increasing the physical burden relying on long-term wearing. The purpose of this paper is to realize a noninvasive fine-grained home care monitoring system that is sustainable for people requiring special care. In the proposed method, we present a novel technique that integrates inexpensive camera devices and bone-based human sensing technologies to characterize the quality of in-home postural changes. We realize a local process in feature data acquisition once per second, which extends from a computer browser to Raspberry Pi. Our key idea is to regard the changes of the bounding box output by standalone pose estimation models in the shape and distance as the quality of the pose conversion, body movement, and positional changes. Furthermore, we use multiple servers to realize distributed processing that uploads data to implement home monitoring as a web service. Based on the experimental results, we conveyed our findings and advice to the subject that include where the daily living habits and the irregularity of home care timings needed improvement.

摘要

与健全人在家中的身体活动相反,大多数需要长期特定护理的人(例如,卧床不起的患者和行走困难的患者)通常表现出更多的低强度缓慢身体活动,并伴有姿势变化。虽然现有设备可以检测心率和步数等数据,但它们长期佩戴会增加身体负担。本文的目的是实现一种可持续的非侵入性精细家庭护理监测系统,适用于需要特殊护理的人群。在提出的方法中,我们提出了一种将廉价的摄像设备和基于骨骼的人体感应技术集成在一起的新技术,用于描述在家中姿势变化的质量。我们实现了每秒一次的特征数据采集的本地处理,从计算机浏览器扩展到 Raspberry Pi。我们的主要思想是将独立姿态估计模型输出的边界框的变化视为姿态转换、身体运动和位置变化的质量。此外,我们使用多个服务器来实现分布式处理,将数据上传以实现作为 Web 服务的家庭监控。基于实验结果,我们向被试传达了我们的发现和建议,包括日常生活习惯和家庭护理时间不规律的地方需要改进。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36ad/7588905/0bba73646be7/sensors-20-05894-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验