Graduate School of System Informatics, Kobe University, 1-1 Rokkodai-cho, Nada, Kobe 657-8501, Japan.
RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan.
Sensors (Basel). 2020 Mar 6;20(5):1442. doi: 10.3390/s20051442.
Cognitive Application Program Interface (API) is an API of emerging artificial intelligence (AI)-based cloud services, which extracts various contextual information from non-numerical multimedia data including image and audio. Our interest is to apply image-based cognitive APIs to implement flexible and efficient context sensing services in a smart home. In the existing approach with machine learning by us, with the complexity of recognition object and the number of the defined contexts increases by users, it still requires directly manually labeling a moderate scale of data for training and continually try to calling multiple cognitive APIs for feature extraction. In this paper, we propose a novel method that uses a small scale of labeled data to evaluate the capability of cognitive APIs in advance, before training features of the APIs with machine learning, for the flexible and efficient home context sensing. In the proposed method, we exploit document similarity measures and the concepts (i.e., internal cohesion and external isolation) integrate into clustering results, to see how the capability of different cognitive APIs for recognizing each context. By selecting the cognitive APIs that relatively adapt to the defined contexts and data based on the evaluation results, we have achieved the flexible integration and efficient process of cognitive APIs for home context sensing.
认知应用程序接口 (API) 是一种新兴的基于人工智能 (AI) 的云服务 API,它可以从图像和音频等非数字多媒体数据中提取各种上下文信息。我们的兴趣是将基于图像的认知 API 应用于智能家居中,以实现灵活高效的上下文感知服务。在我们现有的基于机器学习的方法中,随着识别对象的复杂性和用户定义的上下文数量的增加,仍然需要直接手动标记适度规模的数据进行训练,并不断尝试调用多个认知 API 进行特征提取。在本文中,我们提出了一种新方法,该方法在使用机器学习训练 API 的特征之前,使用小规模的标记数据来预先评估认知 API 的能力,以实现灵活高效的家庭上下文感知。在提出的方法中,我们利用文档相似性度量和概念(即内部凝聚力和外部隔离)来整合聚类结果,以了解不同认知 API 识别每个上下文的能力。通过根据评估结果选择相对适应定义的上下文和数据的认知 API,我们实现了认知 API 在家居环境感知中的灵活集成和高效处理。